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Preface

Preface

In this volume I shall give some guidelines for solving problems in the theories of Fourier series and
Systems of Differential Equations and eigenvalue problems. The reader should be aware of that it has
never been my intention to write an alternative textbook, since then I would have disposed of the
subject in another way. It is, however, my hope that this text can be used as a supplement to the
normal textbooks in which one can find all the necessary proofs.

This text is a successor of Calculus 1a, Functions of one Variable and Calculus 3b, Sequences and
Power Series, which will be assumed in the following.

Chapter 1 in this book is a short review of some important trigonometric formulse, which will be
used over and over again in connection with Fourier series. This is a part of the larger Chapter 1 in
Calculus 3b, Sequences and Power Series. Here we shall we concentrate on the trigonometric functions.
This introducing chapter should be studied carefully together with Appendix A, which is a collection
of the important formulae already known from high school and previous courses in Calculus. Since we
shall assume this, we urge the student to learn most of the formule of Appendix A by heart.

The text in the following chapters is more difficult than the previous mentions texts on Calculus. The
Fourier series have always been included in the syllabus, but they have also been considered by the
student as very difficult. I have here added a chapter with a catalogue over standard examples and
standard problems with their results, though without their corresponding calculations.

Then follows a little about linear systems of differential equations, where some results from Linear Al-
gebra are applied. I have tried always to find the simplest methods of solution, because the traditional
textbooks follow the usual tendency of using a style which is more common in advanced books on
mathematics without giving the innocent reader any hint of how one may use this theory in practice.
In one of the variants we use the Caley Hamilton’s theorem known from Linear Algebra. This theorem
may, however, not be known to all readers. The theory is illustrated by (2 x 2)-matrices.

At last we give a short review of eigenvalue problems. This is really a difficult subject, and it is only
possible to benefit from it, when one at least knows the theory of Fourier series. On the other hand,
the eigenvalue problem is extremely relevant for the engineering sciences — here demonstrated by the
theory for bending of beams and columns. I also know of applications in the theory of chloride ingress
into concrete, let alone the periodic signals in emission theory. These applications have convinced me
that the eigenvalue problems are very important for the applications. On the other hand, the theory
is also difficult, so it is usually played down in the teaching which to my opinion is a pity. I shall not
dare here to claim that I have found the right way to present these matters, but I shall at least give
it a try.

All notes from in this series of Calculus are denoted by a number — here 4 — and a letter — here b —
where

a stands for “compendium”,

b stands for “solution procedures of standard problems”,

c stands for “examples”.

Since this is the first edition of this text in English, I cannot avoid some errors. I hope that the reader

will see mildly on such errors, as long as they are not really misleading.

26th June 2007
Leif Mejlbro
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Calculus 4b Review of some important trigonometric formulze

1 Review of some important trigonometric formulae
1.1 Trigonometric formulae

We quote from Calculus 1a, Functions in one Variable, the addition formule

1

cos(z +y) =cosx - cosy — sinx - siny,

2) cos(x —y) = cosx - cosy + sinx - siny,

(1)
(2)
(3) sin(x +y) =sinx - cosy + cosx - siny,
(4)

sin(z —y) = sinx - cosy — cosx - siny.

Mnemonic rule: cosz is even, and sinx is odd. Since cos(x £ y) is even, the reduction can only
contain the terms cosx - cosy (even times even) and sinx-siny (odd times odd). We have furthermore
a change of sign on the term sinz - sin y.

Analogously, sin(z £ y) is odd, thus the reduction can only contain the terms sinz - cosy (odd times
even) and cosx - siny (even times odd). Here there is no change of sign on sinus. ¢

We shall also sometimes need to simplify products like
sinx - siny, COS T - COS Y, sinx - cosy.

even even odd

We obtain these simplifications from the addition formule above:
2sinz - siny = cos(x — y) — cos(z + y), (2) — (1),

2cosx - cosy = cos(x — y) + cos(x + y), (2) + (1),
2sinx - cosy = sin(x — y) + sin(z + y), (3) + (4).
We get our formuleze by a division by 2. They are called the antilogarithmic formule:
1
sinx - siny = E{cos(x —y) —cos(x + y)}, even,
1
COSZT - COSY = i{cos(x —y)+cos(z+y)}, even,

1
sinz - cosy = E{sin(x —y) +sin(z +y)}, odd.

1.2 Integration of trigonometric polynomials

Problem: Find

/sinm x - cos” xdx, m,n € Ny.

We shall in the following only consider one term of the form sin™ x - cos™ x of a trigonometric polyno-
mial, where m and n € Ng.
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We define the degree of sin™ z - cos™ x as the sum m + n of the exponents.

Concerning integration of such a term we have two main cases: Is the term of odd or even degree?
These two cases are again each divided into two subcases, so all things considered we are left with
four different variants of integration of a trigonometric function of the type described above:

1) The degree m + n is odd.
a) m = 2pis even and n = 2¢ + 1 is odd.
b) m =2p+1is odd and n = 2¢ is even.
2) The degree m + n is even.
a) m=2p+1and n =2+ 1 are both odd.
b) m = 2p and n = 2q are both even.
la) m = 2p is even and n = 2¢g + 1 is odd.
Use the substitution u = sinx (corresponding to m = 2p even), and write

cos®™ xdx = (1 — sin®z)? cosz dx = (1 — sin® z)? dsin z.

Today’s job market values ambitious, innovative, perceptive team players. Swedish
universities foster these qualities through a forward-thinking culture where you’re
close to the latest ideas and global trends.
Whatever your career goals may be, studying in Sweden will give you valuable
Swedish Institute ~~ skills and a competitive advantage for your future. www.studyinsweden.se
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Then we get
/sin2p x - cos? xdy = /sin2p z(1 —sin® z)?dsinz = / u?P - (1 —u®) du,
u=sin z
and the problem has been reduced to an integration of a polynomial followed by a substitution.
1b) m =2p+1 is odd and n = 2q is even.
Use the substitution u = cosz (corresponding to n = 2¢ even), and write

2p+1

sin zdr = (1 —cos’z)P coszdr = —(1 — cos?)P dcos .

Then

/sinQ”'|r1 z-cos®xdr = — /(1 —cos®z)P - cos® xdcosx = f/ (1 —u?)? - u?l du,

U=Ccos

and the problem has again been reduced to an integration of a polynomial followed by a substitution.
2) Then consider the case where the degree m + n is even. Here the trick is to pass to the double
angle by the formulee

1 1 1
sin? z = 5(1 —cos2z), cos’x = 5(1 + cos2x), sinxz-cosz = 5 sin 2z.

2a) m =2p+ 1 and n = 2¢ + 1 are both odd.

Rewrite the integrand in the following way:
- op+l 2g+1 1 Pyl Tl
sin®? - cos®T = 5(1—C0$21‘) 5(1—|—C082Z‘) . §s1n21:.

Then the problem is reduced to case 1b), and we get by the substitution u = cos 2x that

1 1
- 2pl 2g+1 _
/Sln PThg - cos®™ ™ xdr = “oprail §L:COS2m(1 —u)’(1+u)? du.

The problem is again reduced to an integration of a polynomial followed by a substitution.
2b) m = 2p and n = 2q are both odd.

This is actually the worst case. First we rewrite the integrand in the following way:

1 ! a
sin2pa:-c032q:c—{§(1Cos2x)} {5(1+C082w)} .

We see that the left hand side has degree 2p + 2¢ in (cos z, sin x), while the right hand side has got its
degree halved p + ¢ with respect to (cos2x,sin2x), i.e. described by the double angle. On the other
hand we have also got one term written as a sum of more terms which now should be handled one by
one.

Since the degree is halved whenever 2b) is applied, and since the other cases can be calculated straight
away, we see that the problem can be solved in a finite number of steps.
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Example 1.1 Consider the integral
/ cos® z dx.

The degree 04 6 = 6 is even and both m = 0 and n = 6 are even, so we are in case 2b). By using the
double angle we get the calculation

1 !
cosﬁx_{2(1+cos2x)} :g(l+30052x+300522:n+cos32x).

Integration of the first two terms is easy:

1 1
g/(1+3cos2aj)d:c = ga:—l— % sin 2z.

The third term is again of type 2b), hence we shall here consider the quadruple angle,

1 1 3 3
§/3COS22xdx:2/5(1+cos4x)dx:1—6x+@sin4x.

Finally, the last term is of type la), hence

1 1 1 1 1
g/COSBde:E: g/(l—sin22x)-§dsin2x: 1—6sin2x—4—gsin32m.

Collecting all results we finally get after a reduction

5 1 1 3

6 : . 3 :

=—zxz+ - - — + — sin4z.
/cos xdx 6% sin 2z sin® 2x sin 4z O
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2 Fourier series; methods of calculation

2.1 General

The Theory of Fourier Series is a special case of the theory of series. Its purpose is to break up a
periodic function

f+T)=f(t) for every t € R

into basic oscillations. The main case is when 1" = 2m, where one gets

1 o0
f~ 540 + Z {a, cosnt + by, sinnt}

n=1
with the coefficients

™ 1 ™
ap, = — f(t) cosntdt, by, = — f(t)sinnt dt,

L — T J—n

and where the integration over [—7, 7| can be replaced by any other interval of length 2, e.g. [0, 27|

In the general case we get by the change of variable

T
T:%tG[O,T[ for ¢t € [0, 2.

The symbol ~ requires a comment. It means that the sequence of segments

1 n
sn(t) = §a0+2{akcoskt+bksmkt}, n €N,
k=1

converges in the sense of “energy” (also called in square mean, or in L?) towards f. This means more
explicitly,

™

lim |f(2) — s, (2)|*dx = 0.

In particular, one can within the error of any € > 0 approximate the energy of a signal f(t) by a finite
sum s, (x), which will make the engineering considerations somewhat easier.

This terminology sounds like a course in transmission of e.g. radio waves, but actually Fourier Analysis
can be found in many other disciplines, like e.g. diffusion over some finite interval. Furthermore, it is
closely connected with the eigenvalue problems, cf. Chapter 5. The generalized Fourier series occur very
frequently in technical literature, where properties of materials may be built into the eigenfunctions.

Seen from this point of view

Theorem 2.1 Parseval’s equation.

- f(t)zdt:%ag—i-Z{ai—i-bi}.
- n=1
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becomes the most important theorem in the engineering applications. On the other hand, most
students will in their beginning of their studies consider this theorem as “quite odd”.

The explanation is that the space

P((-m = { s mal—~ R \ P <o

—Tr
can be considered as a generalization of the Euclidean space to an infinite dimensional space, when we

supply it with the inner product (the chosen notation here comes from Quantum Mechanics, where
one also can meet Fourier series)

(f.9) = ! j f(t)g(t)dt.

™

With this inner product we obtain that the system

1
{,costsint,cos 2t,sin2t, ..., cosnt,sinnt, ... }

V2

becomes an infinite orthonormal basis, and the Fourier series of f is exactly the description of f with
respect to this orthonormal basis (cf. Linear Algebra)

www.job.oticon.dk
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f o~ <f’\/i§>%+i{(f,cosnﬂcosntJr(f,sinnt)sinnt}

n=1

1 oo
= 540 + ;{an cosnt + b, sinnt},

because

1 1 1 1 (7 1
<f’ﬁ> —2—5';[ﬂf(t)0080tdt—§ao,

and

™

1
(f,cosnt) = — f(t)cosntdt = a,, n €N,
™ —T

1 ™
(f,sinnt) = — f(t)sinnt dt = ny,, neN.
™ —T

Then Parseval’s equation becomes nothing but Pythagoras’s theorem in infinite dimensions. The

1
strange factor = is due to the fact that — is the normed basic element, while the constant 1 is not

V2

normed. On the other hand, 1 is easier to work with than so usually one chooses to stay with

1
\/57
1
the factor = in the formulse.

The students’ precariousness of the Theory of Fourier series is caused by the “unusual”’ convergence
in energy instead of in a pointwise sense. At this stage of the education the teaching is still mostly
focussing on pointwisely defined functions. Fortunately the main theorem for Fourier series gives a
very useful pointwise result.

Let f : [-m,7[— R be a given function. Whenever we consider a point of discontinuity to of the
type where the limits exist from the left and from the right without being equal, we redefine f to the
so-called normalized function f* by

S (Flt0=) + Feob)}  for to €] —mal,
P =1
SU=) + f-mh)} forto =,

where f(to—) = limy—,— f(t) and f(to+) = limy_ 4+ f(t), i.e. the limits from the left and from the
right respectively.

The function f (or f*) is called piecewise differentiable, if one can remove a finite number of points
21, ..., Tp from [—m, [, such that the restriction of f to each of the open subintervals is continuously
differentiable, i.e. f' is continuous.

If the periodical function f is piecewise differentiable without vertical half tangents, i.e. f'(t) does
not tend to oo anywhere, we say that f belongs to the class K3 (or in general K7), and we write
f € K,

Download free books at BookBooN.com
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Remark 2.1 We shall never see in the elementary courses of Calculus that f has a vertical half tan-
gent in a Fourier problem. The obvious reason is that the corresponding integrals cannot be calculated
explicitly. But there are also other reasons. It is true that Volterra once constructed an example with
a vertical half tangent and where the Fourier series does not converge in the corresponding point,
but this example lies far beyond what can be expected in an elementary course in Calculus. Fur-
thermore, it can be proved that e.g. f(t) = Vw2 —t? for t € [—m,n[ has vertical half tangents for
t = +m, and its Fourier series is actually pointwise convergent everywhere with the right sum f(¢),
so this condition which occurs in some textbooks is somewhat restrictive. Finally, one may refer to
Carleson’s theorem which states that if f only is of finite energy, (more precisely, f is “measurable”
and squared integrable over [—m, 7[; every function occurring in engineering sciences is “measurable”
in the mathematical sense), then its Fourier series is pointwise convergent “almost everywhere” (i.e.
outside some “meagre set”) with the right sum f(¢). Therefore, it is no point in demanding of the
student that he should check that the function f(¢) does not have vertical half tangents, when this
never will have an impact on the technical applications. ¢

We have

Theorem 2.2 Main theorem. (Riemann’s theorem).
Assume that f € K5_. then the Fourier series of [ is pointwise convergent everywhere with f*(t) as
its sum. Hence

1 o0
f~ 5 @0 + Z{an cosnt + b, + sinnt}

n=1

and

1 o
@) = 5 a0 + Z{an cosnt + by, sinnt} for allt € [—m,7[.

n=1

2.2 Standard procedure for solution of problems in Fourier series, 7' = 27

1) Sketch the graph of f over a periodic interval and also into the two neighbouring intervals.

One should always do this no matter how the problem is formulated. By this extension into the
neighbouring intervals we can immediately see if the end points of the interval are continuity points
or not.

2) Normalize the function f(t) to f*(t) by the formula

£7(8) = (£ (=) + ().

In a point of continuity we get f*(t) = f(¢), and in every point of discontinuity the function f*(t)
is the mean of the limits from the left and from the right. (It is possible to construct examples,
where one cannot apply this definition, but such examples are far too difficult for an introductory
course in Fourier Analysis). Since we already have sketched the graph of f in 1), it is now easy
also to sketch the graph of f* on the same figure by e.g. using another colour for the points in

which f*(t) # f(¢).
3) Explain why f* (or f) belongs to the class K3, .

Check that
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a) f* is piecewise C, i.e. the periodic interval can be divided by a finite number of points into a
finite number of open subintervals, such that f is differentiable with a continuous derivative in
each of these subintervals.

It is of no importance if f* is discontinuous in a finite number of points. We choose the division
points as the points of discontinuity and the points of continuity in which f’ either does not
exist or is discontinuous.

b) f* does not have a vertical half tangent in any end point for any of the open subintervals

mentioned above (if one is so unlucky to have a textbook, in which this unnecessary condition
should be checked as well).

Any function occurring in the introductory courses in Calculus or in engineering applications will
always belong to the class K3 . Even if there exist many periodic functions which do not lie in
K3, none of these has any importance when a physical or technical situation is modelled.

4) Refer to the main theorem and conclude that the Fourier series is pointwise convergent everywhere
with the normalized function f*(t) as its sum function.

From now on we can replace ~ by =, and we have answered a question which always will occur in
a problem on Fourier series. Notice that one should always give an argument for writing = instead
of ~.

These first preparatory four steps can always be made without calculating one single integral.

5) Calculate the Fourier coefficients

™ 1 us
ap, = — f(t)cosntdt og b, =— f(t)sinntdt.
™

—T —T

(Possibly an integration over some other periodic interval, though it usually is the symmetric
interval [—7, 7] because we get some extra information when f(t) is either an even or an odd
function).

During these calculations we may get into some integration problems:

a) If there is given a hint, set up the integrals and use the hint.

b) If f(t) is composed of polynomials, exponentials or hyperbolic functions, apply partial integra-
tion.

¢) If f(t) contains trigonometric functions, we first reduce the products of these by the antiloga-
rithmic formulae

1
cos Acos B = Q{COS(A — B) +cos(A+ B)},

1
sin Acos B = §{sin(A — B) +sin(A + B)},

sin Asin B = %{COS(A — B) —cos(A+ B)}.

After this reduction we continue with a partial integration.
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Remark 2.2 Be very careful when a partial integration is applied because one may unawares
divide by 0. This is actually the most common error made by students in problems like this.
Therefore, always check whether some value of n gives 0 in the denominator. Such values of n
require a separate treatment.¢

d) If f*(¢) is even, i.e. f*(—t) = f*(t) for every ¢, then
2 ™
ap, = —/ f(t)cosntdt and b, =0.
T™Jo
e) If f*(t) is odd, i.e. f*(—t) = —f*(t) for every t, then
1 [ .
anp =0 and b, = —/ f(t)sinntdt.
T Jo

Point 5) is usually the hard work in problems in Fourier series.

6) Set up the Fourier series, i.e. insert the values of a,, and b,, found in 5) into the pointwise equation
[cf. point 4)]

1 o0
)= zao+ an cosnt + by, sinnt}.
2

n=1

1
Do not forget the factor 3 in front of ag. Refer if necessary again to the main theorem.
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7) Concerning uniform convergence of the Fourier series we have two (not exhaustive) possibilities:

a) If f*(t) has at least one point of discontinuity (which e.g. can be seen from the graph sketched
in point 1)), then it follows from a theorem in any textbook on Fourier Analysis (refer to this
theorem!) that the convergence cannot be uniform. In fact, all the functions cosnt and sinnt
are continuous, and the sum function is not.

b) If f*(t) = f(t) is continuous, we consider the majoring series
1 o0
5laol + D _{lan| + ba]}.
n=1

If this majoring series is convergent (check!), then it follows from another theorem in any
textbook (refer to it!) that the Fourier series is uniformly convergent.

8) If one in connection with a Fourier series is asked about the sum of a series of numbers, then we
have two possibilities:

a) (The most frequent case). If the terms in the series of numbers look like the Fourier coefficients,
then apply the main theorem, i.e. point 6) with equality and the adjusted function f*(¢).
Insert some suitable t-values, typically t = 0, m or g, and more rarely ¢ = %

Then reduce.
b) (This does not occur so often.) If the terms of the series look like the sum of squares a? + b2,

and the series does not contain negative terms, then use Parseval’s equation

1 " 2 1 2 > 2 2
— . f(t) dt = 5 ap + nzz:l(an + bn)'

™

In this case one should do the following
1 x . 1

i) Calculate ag = — f,ﬂ f(t) dt explicitly and then 5 a?.
™

It is due to the lack of the factor 1/2 of normalization that the errors usually occur here.

1
The student is wrongly inclined to square 3 ao from the Fourier series itself, but then we

1
only get 1 a2. Therefore, be careful here.

1
ii) Since f(t) is given from the very beginning we can always calculate — f:rﬂ f(t)2dt.
™

iii) Insert and reduce.

9) It is possible here to set up the following task: Given a Fourier series. Find its pointwise sum
function f*(t).

One will, however, never get this task in an elementary course of Calculus, because the answer
requires some knowledge of Complex Function Theory, and even with such a knowledge this task
may be very difficult. The problem is of course relevant in engineering applications because one by
using various measuring devices implicitly determines the coefficients a,, and b,, without knowing
the sum function. Here the mathematics becomes too difficult for Calculus.
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2.3 Standard Fourier series with pointwise results and Parseval’s equation

Some functions from K3 _ appear very frequently in the engineering sciences. In this section we set
up a catalogue including the main results from these examples. The catalogue is a poor replacement
of the missing treatment in point 9) above. In the next section we give a similar list for a different
purpose sorted out according to “type”.

We suppose in the following that all functions are periodic, so they will only be specified in a periodic
interval.

2.4 The square function

The normalized function is given by

1 forte]0, ]
@) = 0 fort=0o0rt=m,

-1 forte]—m0l

The function is odd and

4 1
@) = - nz::o o1 sin(2n + 1)t for every t € R.

Special pointwise results. For t =

ol

we get f*(1) =1 and sin(2n + 1)% = (—1)", thus

~—
3

—_
I
|~

[~]e

—
|
—_
~—
3

. ~(-)" 7
rlsomy1 ¢ Z2n+1_4’

n=0 n=0

cf. the Taylor series of arctan.

4 1
Parseval. Since a,, = 0 and by, = 0 and bgy, 41 = el TR we get
L™, 16 1 . = 1 w2
- 2dt=2==> ———— e — =
T _,rf() 71'2;::0(2714—1)27 e ;(Qn—&—l)z 8
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2.5 The identical function in | — 7, 7|
The normalized function is given by
t forte]—m,n,

)=

0 fort=-—-mort=m.

3
/ y 2

The function is odd, and

s n+1
Z sin nt for every t € R.

T 7r
Special pointwise results. If we put t = 5 we have sinn 5 = 0 for n even. For odd indices we

replace n by 2n + 1, and then sin(2n + 1)% = (—1)". Thus

UORE RT3 =

i.e. the same result as for the square function.

(_1)7l+1
Parseval. Since a,, =0 and b,, = 2 ———, we get

n
1 (" 1 [ 2 & =1
— tPdt== [ tdt="—=) br=4) —.
o IR Sh=13

From this we derive the important result
Sit
n=1 n -

2.6 The first sawtooth function

2

The normalized function is given by

@) =n—|t| for t € [—m,7].
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Special pointwise results. When ¢t = 0 we have cos(2n + 1)0 = 1, hence

£(0) W+4§: : from which i ! G
=T=—4— —_— rom whic — = —
T2 a2 Lo+ 1?28

Parseval. Since (NB) and 4 e get
val. Sin = n ntl = — 5, Wi
Go =T Gntl = T on 2 V08
L™ . 2 [T ) 212 71?2 16 1
- £)2dt = = A== 2y —
- [ 1o ﬁ/ﬂr(w Pt =T = T Y e

so by a rearrangement

o0

)P ™
(2b+1)* 96

n=0

2.7 The second sawtooth function
The normalized function is given by

f () = Il

for t € [—m, 7.

Notice the periodic continuation. The function is even and continuous.

4

cin _ - 1
fr@t)=f(t) = ﬂ_;m cos(2n + 1)t.

™
2

Notice also that if the two sawtooth functions are added we get the constant w, which agrees with
the fact that the sum of the two series is w. For the same reason neither the pointwise results nor

Parseval will give anything new.
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2.8 Expansion of cosine in a sinus series over a half period
The normalized function is given by

cost for t €]0, 7],
@) = 0 for t = —m,0,,

—cost forte]|—m,0l

The function is odd,

8 oo
@) = = ; # sin 2nt for every t € R.

Special pointwise results. These are of no interest for ¢t = 0, g, 7 (both sides of the equality are
7€ero).

T
For t = 1 we get after some calculation that

™ T V2 8 & n T 1 1 1
* — = S - = — = — —_— 1 —_ = — . _17l
f (4) AT w;am?—ﬁm”z w;<4n+1+4n+3> (=07

from which

i(_l)n (4n1+1 + 4n1+3) - Wf‘

n=0
. 8
Parseval. Since a,, = 0 and bo,,+1 = 0 and bg,, = — - , we get
T 4n? —1

1 (" 1 [ 64 S no\°

= t)2dt = = 2tdt =1= - = "

m —wf() ”/—WCOS ; 7T2n—1<4n2_1> ,
hence

> n 2 B 2

et 4n? —1 64
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2.9 Symmetric parabolic arc in [, 7]

The normalized function is given by

fr(t) = f(t) =t for t € [, 7).

The function is continuous and even,

(V)

o) =f@) %+4Z(_12) cosnt, teR.

Special pointwise results. For t = 0 we get
’]T o0
FO)=0=+5+ Z

For t =7 we get

1)n+1

,  from which Z

n=1

o, w? 4°°1 ; h.h°° 1 7
fm)=m —E—l— ;::157 rom whic Zﬁ__

n=1 6
2 1)
Parseval. Since ag = 2 - % (NB), and a,, =4 - %,
n
1 (™ 9 2 4 2
— t)“dt = — t*dt = ==
=2 [ TADICE

hence by a rearrangement,

4

=1 T
ER

2.10 Hyperbolic cosine in [, 7]

The normalized function is given by

[*(t) = f(t) =cosht  forte [—m, x|

b, =0 for n € N, we get

23
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The function is continuous and even,

£ = f(t) = sinh 7 N 2sinh 7 Z T(L;
n=1

™ m

1 n
) cosnt, teR.
+1

Special pointwise results. For t = 0 we get

_1)n+1

™

sinh7  2sinh7 o= (—1)" ) = (
f0)y=1= +— ;n2+1’ from which ;

n?+1

™

1
T2 2sinhnw

T0P 100 [
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For t =7 we get

f(m) = coshm =

sinhm  2sinh 7 1 . > 1 T 1
+ p Zn2+1a frOInWthh ;nz——i_l:—cothﬂ'—*.

T 2 2

We see that n = 0 corresponds to —1 or 1 in both series. Therefore, if we add 1, then (note the change
of sign in the first series)

= (=) 1 ™ = 1 1  mcoshm
= — d J— -
;n2+1 2 2sinhr nz:%nz—i—l 2" 2snhn
2sinh 2 sinh —1)"
Parseval. Since ag = ST and a, = ST (=1 and b, = 0 for n € N, we get
™ n?+1
1 [7 sinh 27 sinh 7 cosh 7 2sinh® 7 4sinh? 7 1
- sh? t dt = 1= 1= 7
R e s

hence by a rearrangement,

i#—zcothﬂ-ﬁ_i_}
n—1 (n2+1)2 4 4sinh®’7 2

Since n = 0 corresponds to the constant 1, we also get that

oo

z:#—ico‘uh7r—|—w72—i-1
—(n2+1)? 4 4sinh®r | 2
2.11 Exponential function over | — 7, 7]

The normalized function is given by

e for t €] —m, 7|,
[ () =

cosh(ar) for t = —m, .
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The function is neither continuous nor even or odd.

sinh amr sinh o

[ _1)
@)= +2 - Z oz(Q —l—)nQ {acosnt —nsinnt} .

T

Special pointwise results. For t = 0 we get

. inh = )"
f(o):1:S Wom{ Z 2+n2}

hence

1)ntt 1 T
Z a2+n2 T 202 2asinhan’

For t = 7w we get

f*(m) = coshar =

sinhar  2asinh ar w— 1
L

ar — a? +n?’
hence
i 1 __ mcothar 1
a?2+n2 2cv 202
n=1

When we start the the summation form n = 0 (and change one single sign), we get

. a?2+4+n?2  2a?2 2asinhar’
—

— a® +n? ~ 202 2asinhar’

i (=)™ 1 T i 1 1 m cosh ar
a? +n? 1
Since a2 + b2 = = for n € N, we do not get anything new by an application of

(a®+n2)2  a®+n?
Parseval’s equation.
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3 A list of problems in the Theory of Fourier series

It should be of some interest also to have a larger list of Fourier series. When the calculations are not
too difficult the usual pattern will be the following;:

a) Indication of a periodic interval.

b) Specification of f in a periodic interval.

We shall here tacitly assume that there will be no trouble with the “vertical half tangents”, i.e.
we shall always assume that the half tangents do exist everywhere. It will be too cumbersome to
mention it every time.

c) The Fourier series with an indication of = whenever this is possible.
d) Possible pointwise results.

e) Parseval’s equation.
The subsections follow the type of the function. These are shortly listed here:

e A piecewise constant function.

e A piecewise linear function.

e A piecewise polynomial of second degree.

e A piecewise polynomial of third degree.

e A piecewise polynomial of fourth degree.

e A piecewise sinus.

e A piecewise cosine.

e Mixed sinus and cosine.

e A piecewise function composed by a polynomial times a trigonometric function.
e A function, in which the exponential function enters.

e The problem of the condition of vertical half tangent.

In the last mentioned subsection we discuss what is known and where this condition of avoiding
vertical half tangents stems from. The correct condition is that the function should be of bounded
variation (not defined in these notes). Since every monotonous function in particular is of bounded
variation, we must necessarily have pointwise results for functions which are piecewise C'! and which
are monotonous in the neighbourbood of every exception point.

We note that this list will contain more information than what is usually asked for.

3.1 A piecewise constant function
Example 3.1 The period is T.
T
+A forte ]0,5{,
fi) = supplied by f*(nT) =0 for n € Z.
—A forte ]—%,0[.
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Fourier series:

A, 1 2
f~77§2n+1 sin nwt, Wherew:%.

Pointwise:

2n +1 2n+1

n=0

4IA ] 1 > 1 T
A= 72 sin nwt, i.e. nz:;) sin nwt = % forte] ,5{
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A list of problems in the Theory of Fourier series

Calculus 4b
Parseval:
A2 44?2 & 1
5 T 2 (om 1 1)2°
2 e (2n+1)

Example 3.2 The period is 2m.

1 forO<t<m,
f(t)_{ 0 for —m<t<0,

Adjusted by f*(nm) = 5

ie. Z (7

1
-, n €.

159

0.5

054

Fourier series:

1
sin(2n + 1)t.

1 2
fw§+%nz:;2n+1

Pointwise: For ¢ €]0, 7| we get

1 1S
1=—-+—
2+7rnz:;)2n+1

1 1
in(2 1), ie.
sin(2n + 1)¢, i.e 22n+1

oo

sin(2n + 1)t = %

n=0

T
For t = — we obtain the series of arctan 1.

Parseval:

1=

N | =

4 & 1 _ > 1
+FZ(MH)?’ e D n+12 8
n=0 n=0

2

L.
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Example 3.3 The period is 2.

1 for ft| < =, i .
ft) = T 4 Adjusted by f* (j:— + 2n7r) = _.
0 for 1 < |t] < . 4 2

15

0.5

-05

Fourier series:

m

1 2 o0 Sln(n4)
~oEEY 22 t.
f +7r 2 " cosn

=

Pointwise: For t = % we get by applying 2sin (n %) oS (n %) = sin (n g) the same series as
before.
For ¢t =0 we get

> in (). i X (nF) =

n=1

2
T

Parseval:
= 1 i 32
m;—sm (n3) ie Xt (ng) =5 0
Example 3.4 The period is 2m.
™
0 for |t| < =
or [t| < 5

1
ft) = Supplied with f* (:I:g + zm) =5
1 for g < |t] <.

Fourier series:

n+1

f~—+ Z cos2n+1)
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Pointwise: We get arctan1 for both ¢ =0 and t = 7.

1 1 oo
The case t = g is of no interest (2 =3 +> o 0).

Parseval:

2

1 4 1
==t =y — ="
2+7r27;0(2n—|—1)2 8 0

Example 3.5 The period is 2¢.

—qo for—§<t<0,
ft) = Q0 for0<t<§,
0 for ; < |t < ¢.
Adjustments in the discontinuity points.

Fourier series:

f~iﬂi{

. T 1— (=™ | T
sin(2n — 1) — _— 2n —t p .
2n_151n(n )€t+ o sin2n 5 }

By investing some effort one can further reduce this result since 1 — (—1)" is either 0 or 2.
Pointwise: Here we get some extremely ugly results which are not worth mentioning.

1 2
Parseval: This formula is here reduced to the well-known Zf;o m = % O
n

Example 3.6 The period is 4.
Even function with

for0 <t <

vo| @21

for€<t<
2

f01r3;<t<2€7

ft) =

)

S o~ -

with adjustments in the discontinuity points.

Fourier series:

f 1+£ cos lt +ECOS @ —ECOS @ —ECOS @ + 4+ ——
2 ™ 20 3 20 5 20 7 20 '
Pointwise: It is not worth mentioning any of these ugly results.

Parseval: This formula is here reduced to the well-known fo:o — = —
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3.2 Piecewise linear functions

Example 3.7 The period is 2.

ft)y=t forte]—mx]. Adjustment f*(m 4+ 2nm) = 0.

3
/ y 2

Fourier series:

I~

n=1

(—1)"*! sinnt.

S
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Pointwise:

- 2
Z (=) sinnt  for |t| <,

3

and especially arctan 1 for ¢t = g

Parseval:

2

272 =~ 1 — 1
T:4nz::lﬁ’ 1.€e. ;F:F <>

Example 3.8 The period is 4.
f(t) =t forte]—2,2[. Supplied by f(2+ 4n) = 0.
Fourier series:
4 S (-0 ant
AR ()

The rest: Cf. a previous example. ¢

Example 3.9 The period is 2m.

t for0<t<m, . X .7
f(t)—{ 0 form<t<2r supplied by f*(7 + 2n7) = 5"

5 4 2 i 2 4 6 8
Fourier series:
o0
1 n—1

% 7; { cosnt—|— % sinnt}

T 150:71 cos(2 +1t+z s' t
- - n innt.

4 7Tn:0 (2n+1)2
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oo 1 ?
Pointwise: We derive from ¢t = 0 that )~ anri)e = 7r8 . (The same for t = ).
n
When t = g we get the series for arctan 1.
Parseval:
L SR 1 = 1
ERRR =D Bicres ) Op2
. o 1 72
Since Y7, 2= g e get
- 1 4
D @it 9
n=0

Example 3.10 The period is 4.

f() = [t| for t € [-2,2],

The function is continuous and piecewise C'' without vertical half tangents, thus the Fourier series

can be written pointwisely with “=" instead of “~7”:
8 — 1 1
H=1-—S —— cos “ )t ).
f(t) 7r2nz:;)(2n—|—1)2 cos<<n+2>ﬂ')
Pointwise: For ¢ = 0 we derive that 3°°° ! G
ointwise: For ¢t = 0 we derive tha —_— = —.
=0 2n+1)2 8
Parseval:
8 64 1 = 1 i
- =2 — — e —_— = .
3 w+7r4n:0(2n+1)4’ e ;(2n+1)4 o6
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Example 3.11 The period is 8.
f) =t for t € [—4,4].
Apart from the scaling the figure is the same as in a previous example.

The function is continuous and piecewise C'! and without any vertical half tangents. We can therefore

write the Fourier series with “=" instead of “~”:
16 «— 1 T
—t.

ft)=2——= ——— cos(2n+1)
2 £ 20+ 1) 4

By a substitution one is led back to a previous example. ¢

Example 3.12 The period is 2.
2 2

), for ff < 2
=93 s

2
0 for§<\t|§7r.

The function is continuous and piecewise C'' and without any vertical half tangents. We can therefore

according to the main theorem write the Fourier series with a pointwise equality sign instead of
with “~7:

ft) = %T + Z # {1 — cos (n 2;>}cosnt.

n=1

2
o 1 T

Pointwise for t = 0: By applying the well-known formula > , =5 we get
n
21 21 2= 1 2n1 27
EIRE TP DD D (”?)
from which
=1 ( 27T> 2
Z — cos(n— | =——
— 3 18
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Parseval:
1672 872 4 X1 27\ ) 2
= e ()]
n=1
ie.
S 1 —cos 712—7T Q—ﬁ
— 3 - 8L

2
2
It is here possible to reduce {1 — COoS <n %) } further. ¢

.
s &
= F
| \" Y

27
(22277 & " a-;‘
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Example 3.13 The period is 2.
f(t)=2r—3t, te]—mmn[, supplied by f(7m + 2nm) = 2.

Fourier series:
= 6
f~2r+ g (—1)" — sinnt.
n
n=1

T
Pointwise: For t = 5 we obtain the series for arctan 1.

Parseval:

7T2

=1 =1
147r2:87r2+367;ﬁ, from which ZEZF‘ o

n=1

Example 3.14 The period is 2.

1
k—k2Jt| for |t| {o, E} ,

ft)=
1
0 for |t] € :|E,7T:|.

The function is continuous and piecewise C'' and without any vertical half tangents. We can therefore
write the Fourier series with a pointwise equality sign instead of with “~":

f(@) ! —|—E 3 i{1—008 (%)}cosnt.

2r ™ n?
n=1

The rest is then only variations of a previous example. ¢

3.3 A piecewise polynomial of second degree

Example 3.15 The period is 2.
ft) =12, t € [—m, 7).
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1.5

0.5

) ) Oj
-0.5

The function is continuous and piecewise C'' and without vertical half tangents. According to the
main theorem we can then write the Fourier series with a pointwise equality sign instead of only

with “~":

=4
:% Z— —1)" cos nt.
n2

-1 n+1 2
Pointwise: For t =0 fas Y~ = =

n=l - p2 12
Parseval:
2t 2 =1 4
% 79T 162 g from which 2—4:1.
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Example 3.16 The period is 2.

ft) =1, t€]0,2r[.  Adjustment f*(27) = 272

86-4-2 2468

Fourier series:

dr? N[ 4 4
fwg—’_Z{ﬁ cosnt—%sinnt}.

n=1
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. . (e’ (_1)n+1 7‘_2
Pointwise: When t = 7 we get > — =

n=h o2 127
Parseval:
327t 327t 1 =1 7t
5 = 9 +16nz::1§, fromvvhlchnglﬁ:%. O

Example 3.17 The period is 27.
ft)=n* -t € [—-m 7.

The function is continuous and piecewise C'! without vertical half tangents. According to the main

theorem we can then use a pointwise equality sign instead of only “~” in the Fourier series:
272 = 4
ft) ="+ (=1)"T — cosnt.

2
n
3 n=1

One can also get the Fourier series by subtracting the result of a previous example from 72, thus the
remaining questions will only be variants of this previous example. ¢

Example 3.18 The period is 2.
ft)=t(r—1t), tel0,7n]and odd.

The function is continuous and piecewise C'' without vertical half tangents. According to the main
theorem the Fourier series can then be written with a pointwise equality sign instead of with “~7:

8 1
t :—E ——— sin(2 1)t.
f@) 7Tn:0(2n+1)3 sin(2n + 1)
. . 7T
Pointwise: For t = 5 we get
o3 OO hien S
4 mi(2n+ 1) ~(2n+1)P 32
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1 1
Remark 3.1 One still does not know the exact values of > @nt 1) and Y 7, el O
Parseval:
™ 64 1 - 1 7°
2N fomwhich S =
15 w2 @nt o O ; @nr e o6 O

Example 3.19 The period is 2.
2
(t=3) - relo3),
fit) = og lige.

0, tE]g,w},

The function is continuous and piecewise C'' and without vertical half tangents. According to the
main theorem the Fourier series can then be written with a pointwise equality sign instead of with

72 1 2 .

e ™
ft)= o1 +27;1 (n2 i smnE) cos nt.
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Pointwise: For ¢t = 0 we get

2 w2 =1 41 ™
2 % 49 - =  odinn -
4 24+ ;n2 W;TL?’ S

hence by a rearrangement

0 (_1)n _ 7T3
,;] (2n+1)3 32

It is possible to obtain the same result, though it is more difficult, for ¢ = 7.

Copenhagen Diversity creating knowledge
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Parseval:

4 oo o0 oo
1 16 1 16

= St S = )

80 288 —nt m i (2n+1)0 1 = (2n+1)°

&
|
‘=1
+
< =~
Ng

. o 1 4 oo 1 70
Since anl F = % and ZTL=O m = %7 we get

i (- 57°
(2n+1)5 1536

n=0
Remark 3.2 One does not know the exact value of any series

=1 > 1
Z n2k+1 or ;;o (271 + 1)2k+1

n=0
without the change of sign for any odd exponent 2k+1, £k € N. On the other hand one can in principle
always find the exact value for Y~ —5» k € N for any even exponent 2k. ¢
n

Example 3.20 The period is 2.
ft)=(t—m)? forte]—m,w[ Adjustment f*(m 4 2nw) = 212

Fourier series:
4 2 o) _1)n 1"
f~ % +4n¥1 {% cosnt + % sinnt}.

There is nothing new concerning pointwise results.

Parseval:
32nt _ 35t +16i ! + 16 253 ! from which i ! mt O

= — — T — W — = —.

5 9 — nt = n? —nt 90

Download free books at BookBooN.com

43



Calculus 4b A list of problems in the Theory of Fourier series

-1

-2

Example 3.21 The period is 2.
f)y=——-— t €10, 27].
The function is continuous and piecewise C! and without vertical half tangents. According to the
main theorem we can use pointwise equality instead of “~” in the Fourier series:
2 o
s cosnt
fi =Ty

2
n
n=1

By some calculations and reductions we get the pointwise result

cosnt 1 { , w2
E =-—3(r—1) ——} for t €]0, 27].
2
= n 4 3

Parseval:
4 7t <1 . <1 7l
1—5:E+ZF, frOmWthh ZH:% <>

n=1 n=1

Example 3.22 The period is 2w
ft)=1t*—2t, t € [0, 7] even function.

The function is continuous and piecewise C'' and without vertical half tangents. We can according to
the main theorem write pointwise equality instead of “~” in the Fourier series:

7T.2

=T -m+ Y %{1 +(—1)"( — 1)} cosnt.

In this case both the pointwise results and Parseval’s formula become very messy, so we shall
not give any of these. ¢
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Example 3.23 The period is 2.
f(t) =t* —2t, t € [0, 7], odd function.

The adjustment is f*(7w + 2nm) = 0.
Fourier series:

f~ Z:l {w (—1)" — igu - 1(1)”)} sinnt.

™n

Both the pointwise results and Parseval’s formula are rather messy, so we shall not give any of

them. ¢

Example 3.24 The period is 2.

f) = ﬁ t(4m —t), t € [0, 2m].

1
The adjustment is f*(2nw) = 7

Fourier series:

2 1 (1
fwg—ﬁ;{ﬁcosntJrZsinnt}.

45
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Pointwise: Nothing new.

Parseval:
16 8 1 1 1 o1
Bootmlmtmlm O
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3.4 A piecewise polynomial of third degree
Example 3.25 The period is 2.

) =t(x* —t?), t € [-m, 7,

The function is continuous and piecewise C'! without vertical half tangents. We can according to the
main theorem use pointwise equality instead of “~” in the Fourier series:

o -1 n+1
flt)y=12 E % sin nt.
n
n=1
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Pointwise: For t = g we get

32 = (=" -
M 195 fromwhich S L =T
8 nz;; (2n 13’ omWRe ;0 2n+ 13 32

Parseval:

105

Example 3.26 The period is 2.

-y o

945

1676 < 1 ] > 1 76
—:1442 e from which Zﬁz_' O
n=1 n=1

ft)=t (t - E) (t —m), te][0,m] odd function.

2

-5

The function is continuous and piecewise C'' and without vertical half tangents. We can according to
the main theorem use pointwise equality instead of “~” in the Fourier series:

o0

£(t) = gz sin2nt.

Pointwise: For n = Z we get >

Parseval:

1
2 5
n=1

| ©

L
420

Example 3.27 The period is 2.

ft) =t?, t € [-m, 7).

(2n+1)3  32°

3

from which i i = 7T—6 O
T s T s

48
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The function is continuous and piecewise C'' and without vertical half tangents. We can according to
the main theorem use pointwise equality instead of “~” in the Fourier series:

7-(3 oo _1\n _ (_1\n
f(t)—IwLGﬂZ{(n? +2(1 2( D) )}cosnt.

m2nt

Pointwise: Nothing new.

Parseval gives a mess. ¢

3.5 A piecewise polynomial of fourth degree

Example 3.28 The period is 2.

ft) = {x]t| — t*}?, t € [—m, 7.

The function is continuous and piecewise C'' and without vertical half tangents. We can according to
the main theorem use pointwise equality instead of “~” in the Fourier series:

o
= 30 v cos 2nt.

f)
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fo:l -1

Pointwise: For ¢t = 0 we get immediately that
Parseval:
o 1
3 450+9Z , from which ;Ez

Example 3.29 The period is 2.

te[—m,mn].

4

9450

The function is continuous and piecewise C'! and without vertical half tangents. We can according to
the main theorem use pointwise equality instead of “~” in the Fourier series:

8 48 & (—

15 7t n4
n=1

1)n+1

ft) =

cosnt.

Pointwise: For ¢t = 0 we get

1)n+1

P

4 s n+1
= % W—8 Z , from which Z -
n=1 n=1
Parseval:
256 128 2304 o= 1 =1
—_— = — —, f hich — =
315~ 225 «8 st o0 e ; n®

3.6 Piecewise sinus

Example 3.30 The period is 2.
sint, t€]0,n]|,
0

1) t €m0,

9450

Tt

T 720

50
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The function is continuous and piecewise C'' and without vertical half tangents. We can according to
the main theorem use pointwise equality instead of “~” in the Fourier series:

£ =+ Lging Zi ! ont
= — — Smiv— — —F COS znt.
T 2 7rn=14n2—1

Pointwise: For ¢t = 0 we get

1 2 1 > 1 1
0==—-=-y —— e - =
p w;4n2—1’ e ;4#—1 2

LAN/ sPaR

Hcalendar

www. 1calendar.dk
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4 n=1 1=1
For t = T we get
2
11 2& (- = (=ntt or1
l=—+-—— = — — =
3 w;4n2—1’ he nz::l m2—1 1 2
Parseval:
12 N 1 N 4 & 1 . = 1 2 1 o
—=—+4+ -+ — — . le. —_— = — — =
2 72 4 q2 — (4n? —1)2’ —~ (4n2% —1)2 1 2
Example 3.31 The period is 2.
. T
sint, [t < =,
2 T 1
ft) = Adjustment f* (:l:§ + 2n7r) = :I:E.
0, g <t <
15
1i
y
0.5
4 2 2 4
0.5
-1 X
-1.5
Fourier series:
1 1 4n
fr~=sint+ — Z(—l)’”rl - ——5— sin2nt.
2 (et 4n? —1
. . T
Pointwise: For ¢t = 1 we get
V2 _ £ éi yrtl binnzzﬁ+ém(_1)n.L
2 4 T 4n2—1 2 4 T 42n+1)2 - 17

n=0

Download free books at BookBooN.com

52



Calculus 4b

A list of problems in the Theory of Fourier series

from which

i 1) 2n+1 V2m

_ = )

—~ 42n+1)2 -1 16

Parseval:
1 16 ~— > n? w2
e § f hich § — =
1T e L 4n2 EETE @n?—12 o4

n=1

Example 3.32 The period is 27.
f(t) =

| sint|, te[—m,mnl.

The function is continuous and piecewise C'' and without vertical half tangents. We can according to
the main theorem use pointwise equality instead of “~” in the Fourier series:

cos 2nt.
1

2 4 i 1
T o7 4n? —
n=1

Pointwise: Same results as in a previous example.

Parseval:
8 16 — 1 = 721
]_ = — _— JR— —
2 7r2 — (4n* —1)? g 16 2 ¢

Example 3.33 The period is 2.

m
sint, t € [O, —} ,
S1n 2

ft)= odd.

Sin
’ 2’ ;

53
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Adjustment: f* (g + 2n77> =0.

Fourier series:

o0

8 n
[~ ;Z(*l) . e

n=1

7r
Pointwise: For t = 1 we get

i.e.

i (=D)"@2n+1)

42n+1)2 -1
Parseval:

64 — n2

w2 < (4n* —

n=

Example 3.34 The period is 2.

sin 2t,

0,

27

— < |1‘ < 1l
.
2 = =

% Z(_l)n-H .

+81n2nt:
n—1)(2n+1) —
8= (=)"(2n+1)
bln — —
R 2n+1 —1’
27
16
Sy
4n2 64"

sin 2nt.

n
4n? —1

The function is continuous and piecewise C'' and without vertical half tangents. We can according to
the main theorem use pointwise equality instead of “~” in the Fourier series:

ft) =

( 1)TL+1

1
_ 2t -~ 7
g Sm2t+ Z (2n—1)(2n + 3)

sin(2n + 1)t.

54
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Pointwise: Nothing of interest.

Parseval:
1 1 16 < 1 , > 1 72
s ate Zo@n-12@n 132 n;) Gn—1penssr 6 O
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Example 3.35 The period is 2.

[sin2t], [t < 2,

m
0, —<|t| <
g <ltl<m

-2

The function is continuous and piecewise C'' and without vertical half tangents. We can according to
the main theorem use pointwise equality instead of “~” in the Fourier series:

2cos(4n — 1)t

cos4dnt

f@%z%—%%;awt—%E:{(

n=1

4n —3)(4n + 1)

(2n—-1)(2n+1)

2cos(4n + 1)t
Mn—nmn+$}'

The pointwise results and Parseval’s equation become again quite messy. ¢

Example 3.36 The period is 2.

Adjustment: f*(7m + 2nm) = 0.

56

Download free books at BookBooN.com



Calculus 4b

A list of problems in the Theory of Fourier series

Fourier series:
)n+ 1

8 o= (—1)"n 8 .
~ — t - t.
f - El a2 sinn - gz o sinn

n=

The pointwise results and Parseval’s formula are almost like in a previous example. ¢

Example 3.37 The period is 2.

, te[—n, .

The function is continuous and piecewise C'' and without vertical half tangents. We can according

% -4 2

to the main theorem use pointwise equality instead of “~

4o~ 1
f(t): ;—;;m cosnt.

in the Fourier series:

The pointwise results and Parseval’s equation are approximately as in a previous example. ¢

3.7 Piecewise cosine
Example 3.38 The period is 2.

7r
cost for [t| < 5

ft) =

0 forg§|t|§7r.

57
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The function is continuous and piecewise C'! and without vertical half tangents. We can according to
the main theorem use pointwise equality instead of “~” in the Fourier series:

1 1 1)n+1
fi) = —+§ cost + — Zﬁ cos 2nt.

Pointwise: For ¢t = 0 we get

11 2°°(1”+1 n~tt oo 1
l=—4+=-+= . = _,
7T+2+7rnz::14n2 e 2::4712—1 19
Parseval:
1 2 2 1
52ty +7T2Z4T’L271 Z4n2—1 16 2 0

Example 3.39 The period is 2.
cost fort €0,
f@) = Adjustment: f*(nm) = 0.
—cost forte]|—m,0l

Fourier series:
8 o0
f ~ — Z m sin2nt.

™
Pointwise: For t = — we get

T8 2n+D
_—_Z4n2_1bmn_ Enz:: 2n+ A2n+1)2 -1’

i.e.

oo

Z -)"@2n+1) w2
4(2n +1)2 -1 16 °

n=0
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Parseval:

64 0 2 7T2
== z:: 4n2 —1)e from which Z 74712 — 61 O
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Example 3.40 The period is 2.

cos2t fort €]0, 7],

)=

Fourier series:

—cos2t forte]—m0l

Adjustment: f*(nm) = 0.

2n+1
2n —1)(2n + 3)

SO0
0 n=0
. . ™
Pointwise: For t = 5 we get,
g n=0
from which

> G

"(2n+1)
n—l @2n+3)’

D"t (2n + 1)
2n71 )(2n + 3)

™

Z.

Parseval:

16 (2n + 1)?

1=
2 2
— (2n —1)*(2n + 3)

T2
n

Example 3.41 The period is 27.

=1

Fourier series:

cos 2qt,

0, te]—m,0[

2n+1

fw— cos 2qt + — Z @n 1)

tel0,7],qg €N,

sin(2n + 1)t.

o0

(2n +1)?
; (2n —1)2(2n + 3)?

Adjustment: f*(nw) =

17 sin(2n + 1)t.
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T
Pointwise: For t = 5 we get

The case ¢ = 1.

NS
V/

The case q = 2.

1 2 = (2n+1

(=5 (0 23 G
i.e.

i (=" (@2n+1) = (=1)¢ T

¢ (2n+1)? — 4¢? 4

Parseval:

11 4 (2n+1)2

24 i {n 1) - 42y
from which

i (2n + 1) _ o

S {2n+1)2 —4¢2)* 16

61
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Example 3.42 The period is 2.

f(t) = cos =,

te[—m,mnl.

The function is continuous and piecewise C'' and without vertical half tangents. We can according to
the main theorem use pointwise equality instead of “~” in the Fourier series:

1 o (_1)n+1
1
m 2
n=1 — =
S

Pointwise: For ¢t = 0 we get

cosnt.

2 1 s n+1 1n+1
= — —Z , fromwhlchz#—ﬂ'—l
& ™ n=1 — ’I’Llnz——
4
For t =7 we get
2 1= 1 1
0:;—;2 T fromwhlchz :2.
n:1n2—— n1n2——
4
Parseval:
2 1 & 1 J— 1
].:F"‘FZﬁ, fromwhlchz 1 2:
n=1(p2 __ — n=1 (2 _
4 4

Example 3.43 The period is 2.

1

_ t e R.
5 —3cost

ft) =

62
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The function is continuous and piecewise C'' and without vertical half tangents. We can according to
the main theorem use pointwise equality instead of “~” in the Fourier series:

1
fi)y=-+ Zg—ncosnt.
n=1

|
N =

Pointwise: Nothing of interest.
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Parseval:

1 [" dt 1 171\ 5
ﬂ/ﬁ<5_3cost>2§+1§<3—n) =3

ie.
/” @ om
_.(5—3cost)2 32"

Example 3.44 The period is 27.

<

fr(t) =In(1+7%—2rcost), tc€Randrc]0,1].

The function is continuous and piecewise C'' and without vertical half tangents. We can according to
the main theorem use pointwise equality instead of “~” in the Fourier series:

o 2
fr(t) = —22 - cosnt, r€]0,1].
n
n=1

T
Pointwise: For t =0 and t = 5 and t = 7 we get some logarithmic series.
Parseval:

1 (" 9 2 2
- Hr{ln(l—i—r — 2rcost)} dt:42ﬁ’ r €]0,1][. %

n=1

3.8 Mixed sinus and cosine
Example 3.45 The period is 2.

sint

= ——— t ]R.
5 —3cost’ <

f(t)
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-10 -5

The function is continuous and piecewise C'' and without vertical half tangents. We can according to
the main theorem use pointwise equality instead of “~” in the Fourier series:

o0

flit)y= 3 Z 3% sin nt.

n=1
Pointwise: Nothing of interest.

Parseval:

1 [T sin? ¢ 4 1 1
= — T dt=- — =
W/ﬂ(5*3COSt)2 927:92 18’

ie.
s .2
sin“t s
——dt = —.
/_,r (5 —3cost)? 18 0

Example 3.46 The period is 2.

_J sint forte]—m,0], ) o L1
f(t) —{ cost for t €07, Adjustment: f*(nr) = (—1) 5

Fourier series:

1 1
f o~ - + §{cost—|—sint}

+2 > 1 ot 4 2n -
— —F—— COS 4n —F— SIn 4Zn .
™ 4n? — 1 n 1

Pointwise: Nothing of interest.

Parseval:
1114 1 4~ An?
1] = — 4+ 44— - 4 S
7TzJr4+4+772z:(4712_1)2+7T2z:(4nz_1)2
n=1 n=1
1 2 4 & 4n?+1
a §+ﬂ'2+7r27;(4n2—1)2’
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from which

i an?+1 7P
(4n2—-12 " 8

n:l

N =

3.9 A piecewise polynomial times a trigonometric function

Example 3.47 The period is 27

f(t) =tsint, te[—m, 7).

The function is continuous and piecewise C'' and without vertical half tangents. We can according to
the main theorem use pointwise equality instead of “~” in the Fourier series:

n
cosnt.
1

1 = (—1
f(t):l—icost+2;722_)

Pointwise: Nothing of interest.

Download free books at BookBooN.com

66



Please click the advert

Calculus 4b A list of problems in the Theory of Fourier series

Parseval:
7T—271:2+1+4§:;q
3 2 4 = (n?2 —1)%’
from which
S 1wy
oy (n2—-1)2 12 16’
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Example 3.48 The period is 2.

B tsint, te€ 0,7,
) _{ —tsint, te€|—m0]

The function is continuous and piecewise C'' and without vertical half tangents. We can according to
the main theorem use pointwise equality instead of “~” in the Fourier series:

f@t)= g sint — 16 nz @n = 1)n(2n+ )2 sin 2nt.
Pointwise: Nothing of interest.
Parseval:

m_l_m 256en  n?

3 2 4 2 — (4n?2 — 1)%’
i.e.

= 7t 2

n; 4n271 sz s ¢

Example 3.49 The period is 2.
f(t) = tcost, te]—m,w[, Adjustment: f*(nm)=0.

Fourier series:
1 = on
~ —— sint 1" ——— sinnt.
f o~ = sint + ;2( )

Pointwise: For t = g we get

oo

"*1 2n+ 1 ”H 2n+ 1) 1
=3 2 i =-.

Download free books at BookBooN.com

68



A list of problems in the Theory of Fourier series
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Parseval:
2 1 1 > n2 > n? 2 1
Top =44y — hich § ————— = — + —.
3 Tt ;(nLl)T FOT WA ;(nhl)? ot ¢

Example 3.50 The period is 2.

f@t)=t-sin*t,  te|-m,7)

° -
o L oo

The function is continuous and piecewise C'' and without vertical half tangents. We can according to
the main theorem use pointwise equality instead of “~” in the Fourier series:

4 - 1
ft) = 3 sint — g sin 2t + Z(*l)n : m sinnt.

n=3
. . T
Pointwise: For t = 5 we get
_]_)nJrl

- (
+ Z (2n—1)(2n+1)(2n +3)’

n=3

W W~

71—7
5=

Download free books at BookBooN.com

69



Calculus 4b

A list of problems in the Theory of Fourier series

i.e.

> (—1)n+t T 4
n; (2n+1)2n+1)2n+3) 2 3

Parseval:
2 15 16 9 < 1
TR0 Tu T
i.e.
i 1 72 1375 o
ST a2 A
= n*(n*—4) 4 576

Example 3.51 The period is 2m.

f(t)=t*sint,  te[-m, 7]

The function is continuous and piecewise C'' and without vertical half tangents. We can according to
the main theorem use pointwise equality instead of “~” in the Fourier series:

7T2 n+1 8n :
ft) = (3——) smt—&—z o1 sin nt.

Pointwise: For t = g we get

w2 72 1 o~ (—1)"(2n + 1)

L 2 _ 49

4 3 2 + ; nn+1)
from which

Z n+1 2TL+1) 7T2 ].
n(n+1) T a4

n=1
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Parseval:

4 2 2 00 2

T 5 3 0 1 n

—_— — == == 64

5 T T3 <3 2)+ ;(2 G
from which

$ o s

—= (n2—-1)4 720 96 256
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3.10 The exponential function occurs

Example 3.52 The period is 2.

ft) =e™, te]—m 7w, a#0. Adjustment: f*(7+ 2n7) = cosh(an).

20

Fourier series:

{acosnt —nsinnt}.
2
aT us +n

sinham  2sinhar o= (—1)"
f~ - Z:l 3

Pointwise: For ¢t = 0 we get

sinh am . 2acsinh(ar) i (=)™
am 7r “—a?+n?’

from which

> (—1)n ! 1 T
Z() _

o2 +n? 222 2asinh(ar)’

n=1
Parseval:

sinh 2ar B 4sinh? ar 1 n i 1
o 202 / a2 +n2(’

o w2

from which

o0
1 7 coth ar 1
S s T L o

o2 +n? 2av 202

n=1

Example 3.53 The period is 2.

f(t) = el t € [-m, 7).
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20

The function is continuous and piecewise C'' and without vertical half tangents. We can according to
the main theorem use pointwise equality instead of “~” in the Fourier series:

flt) =

1—¢€"
n2+

Pointwise: For t = g we get,

o ()

from which

n+1
z:: 4n2 +1

and

o] _1)n
Z()

—0 4n? +1 2 4 sinh (g)

e DI e

1
ST o1+ e 1 E
7r{6 }+7r{e }n:14n2+1’

1

1
2

™

4sinh (g)

™

’ﬂ

cosnt.
1
oo
1—
< (-1
4n? +1

Parseval’s equation does not look nice in this case:

2
2

7T(e

Z{

1—e"(
n2+1

Y
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Example 3.54 The period is 2.

f(t) = sinht, te]—m,m]. Adjustment: f*(7+ 2n7w)=0.

-5

Fourier series:

2sinh 7 o= (—1)"*'n
I~ . Z 21 sin nt.

n=1
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Pointwise: For ¢t = g fas

m 2sinh7 o= (=1)"(2n + 1)
n T
Ty T TS ¥(2n+1)2+1’
from which
i (=1)"(2n+1) ™
n=0 (2n+1)2+1 4 cosh (g)
Parseval:
sinh 27 1= 4sinh? 7 i n? ’
27 72 — (n?+41)2

from which

o 2
Z o — T cothm — ™
— P12 4 Asinh® 7
Example 3.55 The period is 2.

f(t) = cosht, t € [—m, 7).

The function is continuous and piecewise C'' and without vertical half tangents. We can according

to the main theorem use pointwise equality instead of “~” in the Fourier series:

sinh7  2sinh7 o= (—1)"
t) = t.
f(t) - + - nzz:l 1 cosn

Pointwise: For t = 0 we get

sinh7  2sinh7 o= (—1)"
1 =
T Z nz+1’

n=1

™
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hence

o (—Dntt ™
Z() _

n2+1 2 2sinhrm

n=1

For t = 7 we get

sinhm  2sinh7 1
hm =
coSuT + s nz::l n2+1’

T
hence

i 1 1o cothm

—n24l 2 2
Parseval:

sinh 2 2 sinh? 4sinh? 1 & 1

Y3 1 _ s + ™ Z
27 2 2 (n?2+1)2

from which

2

n=1

Example 3.56 The period is 2.

f(t) = e'sint, te[—n, .

(o)
Zézzcothﬂﬂi,l o
(n?2+1)2 4 4sinh®* 7 2

The function is continuous and piecewise C'* and without vertical half tangents. We can according to
the main theorem use pointwise equality instead of “~” in the Fourier series:

T 2 nt 44

f(t) = sinh {1 + i {(_1)n(4 —20%) cosnt +

n=1

(_1)n+14

n .
smnt}} .
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Pointwise: For ¢t = 0 we get

sinh 7 (4 —2n?) = (=)t 2—-n?) 1
0= { Zn‘*——kél}’ hewce D iy T

n=1

Parseval:

sinh 27 sinh?7 [ 1 > (4— 2n >
47 o w2 {5 Z (n* 4+ 4)2 Z n4+4 }

sinh?7 [ 1 1
p— — —_— 4 S
w2 { 2 + ; nt + 4} ’
from which

o0

1 T 1
= =T cothr— =,
;n‘l—i—él g cothm—o. 0

3.11 The problem of the assumption of no vertical half tangent

This condition, together with the assumption that the one-sided limits always exist are sufficient for
the pointwise convergence, though very far from necessary. It is rather awkward at exams, because
the student for a good reason do not understand why this condition is added. It is also awkward for
experts because it is not at all necessary. At this stage of Calculus some more convenient conditions
are the following:

1) The function is piecewise C! as defined in the textbook.

2) We demand in each of the open intervals in which the function is of class C'* that the derivative
f'(t) has a limit (possibly +00), when ¢ tends to any of the end points of the subinterval.

3) The function is bounded. (Less can do it. It suffices e.g. that the function is squared integrable,
f(t)?dt < oo,
provided the period is 2m).

We mention as an example that the Fourier series for the periodic function f(t), which is given in the
periodic interval [—m, ] by

f(t) =vm2—12, te[—m,ml,

converges pointwise everywhere towards f(¢), in spite of the fact that f(t) has vertical half tangents.
Notice that the Fourier coefficients of f(¢) in this case can only be found by numerical integration.

I shall below sketch what one knows about pointwise convergence of Fourier series:

1) Carleson, 1965. 1f f € L*([—m,n]), then the Fourier series of f is pointwise convergent almost
everywhere with sum f(¢). This result has later been extended by Hunt to f € L?([—m,x]), p > 1,
ie. f (t)|Pdt < oo, cf. e.g. Jorsboe and Mejlbro, Carleson-Hunt’s theorem, Sprmger

2) Kolmogorov constructed once in the beginning of the 1920s an example of a function f € L!([—, 7)),
the Fourier series of which is pointwise divergent everywhere.
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3) Dirichlet, 1837, proved that if f is piecewise continuous and monotonous in a periodic interval,

1
then the Fourier series is pointwise convergent everywhere with the sum 5{ flt=)+ f(t+)}.

4) Jessen, Mat 2, 1962-63, MI 124, quotes Jordan without any further reference that if the function f
of period 27 if of bounded variation (i.e. it can be written as a difference between two to monotonous
functions) on every finite interval, then the Fourier series is pointwise convergent for every ¢ with
the sum

ST + £},

5) du Bois-Reymond, 1876, and Fejér, 1911, both constructed continuous functions of period 27, the
Fourier series of which are discontinuous in some points. Fejér’'s example can e.g. be found in
Jessen, Mat2, 1962-63, MI 126.

The functions under consideration are all bounded, piecewise continuous and piecewise differentiable.
I practice they will also be of bounded variation.

The justification of the condition is that there exist continuous functions which are even continuously
differentiable with the exception of one single point and which are not of bounded variation. With
the additional assumptions given here this means that the limit of f’'(¢) does not exist at all, when ¢
tends to one of the points, in which f is not differentiable. One example is

t cos (%) for x # 0,
f(t) =
0 for z = 0.

In fact, if we choose the subdivision {0, S L

11
.o 1bof[01
M m—1""372 }O [0,1], then

= 11 1
Z|Afk|=1+f—|—f+~~-+fﬂoo for n — oo.
2 3 n
k=1
Notice, however, that

1
2 :
£(t) = t COS(t) for x # 0, € 0,1],
0 for x =0,
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is of bounded variation, because one by some pottering can show that |f/(t)| < 3 for ¢t € [0, 1].

These considerations indicate that one must really think in a strange way if one wants to create a

pointwise divergent Fourier series.
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4 Systems of linear differential equations; methods

4.1 The Existence and Uniqueness Theorem

Before we show the practical solution procedures we must mention the theoretical background, namely
the Ezistence and the Uniqueness Theorem. This is given in two versions of which the second one is
derived from the first one.

Theorem 4.1 Existence and Uniqueness Theorem, 1st version. Let A(t) be a continuous
(n x n)-matriz for t €la,b], and let ty €la,b]. Let v € R™ be a given vector, and u(t) a given
continuous vector function. Then the initial value problem

dx

o~ Alx+u(),  x(to) =v,

has precisely one solution.
Theorem 4.2 Existence and Uniqueness Theorem, 2nd version. Let ag(t), a1(t), ..., an—1(¢)

and u(t) be continuous functions in |a,bl. Let tg €la,b], and let v € R™ be a given vector. Then the
initial value problem

d"z A"z dx
T an—1(t) P i ai(t) P ao(t)z(t) = u(t),
xz(tg) =v1, a'(to) =ve, ..., x(”fl)(to) = v,

has precisely one solution.

mn

It is very important in the 2nd version that the coefficient of the term of highest order ﬁ is 1
(or is a function, which is never zero in ]a, b[). This is frequently neglected by the students. One can

make a similar remark to the 1st version of the Existence and Uniqueness Theorem, but the notation
here invites less to making an error.

There exists in general in the 2nd version only a solution formula, if one already knows n — 1 linearly
independent solutions of the corresponding homogeneous equation. Analogously for the 1st version
(because the 2nd version is derived from the 1st version). However, if the matrix of the system A is
constant, then we can in principle always find the complete solution.

4.2  Solution of a linear homogeneous differential equation system with a
constant system matrix A

The most common problem is to find the complete solution of the matrix equation

d
d—)::Ax, x = x(t),

where A is a constant (n x n)-matrix.

If we put u = 0 in the 1st version of the Existence and Uniqueness Theorem we conclude that there to
any vector v = ¢ € R™ exists precisely one solution. Considering ¢ = (¢1,...,¢,) as a vector consisting
of n arbitrary constants we see that the complete solution must contain n arbitrary constants.

We shall here present five solution methods of this problem:
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1) The eigenvalue method, real eigenvalues.

2) The eigenvalue method, complex eigenvalues, complex calculations.

3) The eigenvalue method, complex eigenvalues, real calculations.

4) Direct determination of the exponential matrix.

)
)
)
)
5) The fumbling method.

Of these. at least the 1st and the 2nd must be mastered by the student. Method number 4 is elegant,
but it may be considered as difficult the first time it is seen. The methods of the 3rd and 5th case are
some kind of emergency brakes. They should only be applied when everything else fails.

One should always (cf. the name “eigenvalue method”) start by finding the eigenvalues of the matrix
A with constant coefficients (check!), i.e. the roots of the characteristic polynomial

P()) = det(A — AT

We shall only go through these methods for (2 x 2)-matrices. The generalization to (n x n)-matrices
is left to the reader.

o
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4.3 Eigenvalue method, real eigenvalues, A a constant (2 x 2)-matrix

We have here two possibilities: 1) two different eigenvalues, and 2) two identical (multiple) eigenvalues.

1) Two different real eigenvalues A1 # As.

The corresponding eigenvectorer are (e.g.)

a a a a
W, = 12 , Wo = 12 ,  where A = 1 12
Al —an A2 —an a21 A22

Proof. For i =1 2 we get

. R ain —A; a12 aio . 0
(A_)\J)wl_< a1 a22>\i)</\ia11)_(*)7

where * is also 0, because the two rows in A — \;I are linearly dependent when J\; is an eigenvalue
and \; # \a. An eigenvector is therefore perpendicular to any of the rows in A — ;1. (This means
that one interchanges the coordinates and changes the sign at only one place). If the first row
should be the 0-vector, then choose the second row instead. [J

The complete solution is
x(t) = ¢1 exp(Ait) w1 + o exp(Aat) wa,
where ¢; and ¢ are arbitrary constants.

A fundamental matriz is

At At
: wi.1€ wa 1€
é(t) - (ekltWI : e)\QtWQ) - ( wl72€)\1t w272€>‘2t > ’

The exponential matriz is
exp(At) = ®(1)®(0)" .
This can be found in a more elegant way by one of the methods in 4); cf. later.

The reader is here reminded of the method of inversion of a regular (2 x 2)-matriz, cf. Linear
Algebra:

1
4 [ a b 1 d —b o
B _<c d> _detB<—C 0 ) det B = ad — be # 0.

(Interchange the elements of the diagonal; change sing on the two remaining elements; divide by
the determinant).

2) Multiple eigenvalues, \; = A = A.

Here we have two cases, a) the eigenspace is of rang 2, or b) the eigenspace is of rang 1.

a) If the eigenspace corresponding to the eigenvalue A of multiplicity 2 has rang 2, then choose
two linearly independent eigenvectors wy, wa, and continue as in 1) above.
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b) If the eigenspace corresponding to A of multiplicity only has rang 1, then find the eigenvector
wi as in 1) above, e.g.

. a12 - ay; a2 _ _
W1—</\a11>, A—<a21 a22>, )\1—)\2—)\.

Then determine wy as a solution of the singular equation
(A — A)wy = wy.

The complete solution is then
x(t) =1 eMwy + o {t M wy + M wz} ,

where ¢; and ¢ are arbitrary constants.

Proof. Tt suffices to prove that x(t) = teMw; + eMws, is a solution. By a calculation we get

dx
dt

and

= teM  Awy + eM (w1 + Awa)

Ax=teM Awy+eMAws.
d
Since e and te are linearly independent, we have d_)t( = A x, if and only if the vectors of the
coefficients agree,
Aw;=Aw; og (A—-ADwy=wy.

Now, w; and wo were precisely constructed in such a way that these two matrix equations are
satisfied. OJ

A fundamental matriz is

P(t) = (eM wy  teMwy +eM wz) .

Since ®(0) = (w; : Ws), we easily get the exponential matriz by the formula
exp(At) = ®(t)®(0) .

4.4 The eigenvalue method, complex conjugated eigenvalues, comples cal-
culations

When a real (2 X 2)-matrix has complez eigenvalues, then they are complex conjugated,
A=a+iw (ogj\:afiw), a,w€R, w#0.

Choose any one of these, e.g. A = a + iw, where w > 0. A corresponding complex eigenvector is then
e.g.

04if = i12 n 0 , A— [ 01 a2 )
a— a1 w az1 Aa22
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(Interchange the first row in A — (a + iw)I and change one sign).
If we instead use the second row in A — (a + iw)I for this construction, we get

d+iB= a4 — 422 +i w : A — ai; a2 _
asy 0 az; @22

Coinciding complex eigenvalues can for real matrices only occur when n > 4. Such systems are too
big for problems in an elementary course of Calculus, so they will not be met here.

Expressed by the real vectors o and 3 the corresponding fundamental matriz becomes

(Re {e(‘”‘i“’)t(a + 26)} : Im {e(“““’)t(a + zﬁ)})

®(1)

= ecos(wt)(a : B) + e sin(wt)(—3 ¢ ).

Since ®(0) = (a : ), it is easy to calculate the exponential matriz:
exp(At) = ®(t)®(0) "'
Note here the alternative method in section 4.6.

The complete solution lgsning is

x(t) = @(t)<61>

C2
= ¢ {e"cos(wt) - a — e sin(wt) - B} + ¢z {e* cos(wt) - B+ e sin(wt) - o},

where ¢; and ¢y are arbitrary constants.

4.5 The eigenvalue method, complex conjugated eigenvalues, real calcula-
tions

This variant is an emergency brake, which should only be applied if one does not like complex cal-
culations at all. The punishment is that even if the calculations can be performed they are always
extremely big.

1) If the eigenvalues are A = a + iw, w # 0, then the structure of the solution is necessarily
z1(t) \ [ a1e™ coswt + aze® sinwt
x2(t) )\ bre® coswt + baesinwt )

2) Calculate

d
dit( og Ax,

and identify the coefficients of €% coswt and e* sin wt.

3) Then we get two equations in the four unknown ai, ag, by, ba. The two “missing” equations
correspond to the two arbitrary constants ¢; and c¢o. Once this has been realized it becomes easy
to solve the system of equations.

One should be aware of that there in practice always will occur some very tricky calculations by this
method.
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4.6 Direct determination of the exponential matrix exp(At)

Let P(\) = det(A— A1) be the characteristic polynomial. Then by Caley-Hamilton’s theorem, possibly
known from Linear Algebra,

P(A) =0.
For (2 x 2)-matrices we exploit this result in the following way:

First set up the characteristic polynomial in the following way,
POA) =X 4+aA+ay=(\—a)* +b,
i.e.

ai ) (a1>2 day — a3
a=—— o0 =ay—(—) = ——2.
o 8 27\ 4

When we put B = A — a1, it follows from Caley-Hamilton’s theorem that

B2 = bl

o
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This result has the following nice consequence,
(5) B*" = (=b)"I and B?"*!=(-b)"B.

Since I commutes with everything we get by an insertion into the exponential series that

exp(A) = exp(Bt+atl)=e"exp(Bt) (I commutes with B)
e9)
1
= e Z — B"t" divide into even/odd indices
— nl
= 1 - 1
_ at B2nt2n at B2n+1t2n+1 1 5
¢ ngO(Qn)! e ;(Qnﬂ)! [apply (5)]

at = —b)" 2n at = —b)" 2n+1
= e {Z((2n))!t }I+e {Z%t +}B.

n=0 n=0

We have now three possibilities which each should be considered more closely:
1) b=0, 2) b>0, 3) b<0.

1) When b =0, i.e. A = a is a root of multiplicity 2 in the characteristic polynomial, then apart from
the first term every term in the series are zero, hence

exp(At) eI+ te"B (B=A —al)

e (1 — at)I + te™A.

2) When b > 0 (i.e. the characteristic polynomial has the two complex conjugated roots A = a+iv/b),
then we perform the following rearrangements of the series

> (@2); er=3 ((27137!1 (Vo- )" = cos(Vb-1)

n=0 n=0

and

ad —b)" 2n+1 1 & - n Lo

Sl

n=0

Since B = A — al, we get by insertion

at Leatsin .
exp(At) = e (:os(\/5~t)IJr\/5 (Vb-1)B

et {cos(\/l_) 1) — % sin(\/l;-t)} I+ %

In this case the roots in the characteristic polynomial are traditionally written A = a £ iw, so
w = v/b. Therefore also

e sin(Vh - t)A.

1
exp(At) = e {coswt . sinwt} I+ —e“sinwt- A.
w w
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3) When b < 0 (i.e. the characteristic polynomial has the two real roots A\a = a 4w, where w? = —b >
0), we get by analogous calculations (trigonometric functions are replaced by hyperbolic functions)

1
exp(At) = e {cosh wt— 2 Sinhwt} I+ — e sinhwt- A.
w w
This can be further reduced by inserting
1 1
coshwt = 3 {e“’t + e_‘”t} , sinhwt = 3 {e“t — e_“’t} .

A solution formula is in this case not so easy to comprehend as the expression above in cosh wt
and sinh wt:

If we write the two roots of the characteristic polynomial
)\1:a+w’ )\2:a_w7

it follows that 2w = Ay — Ag. Then the reduction above gives after some calculation that

1
A1 — A2

exp(At) = {*/\26A1t + >\16)‘2t} I+ N ! {e)‘lt — e)‘zt} A.

1— A2
4.7 The fumbling method

I have coined this name because the method typically is applied by intelligent students who did
not read the theory in the textbook and who at the examination nevertheless by chance fumble
themselves to the right idea. This method should only be applied when everything else fails, because
the calculations often are fairly complicated. The method is, however, far better than this name. when
the coefficients are variable, because in that case all the methods mentioned above fail, since they all
assume that the matrix of the system A is constant.

d
1) Write the system of equations d_)t( = Ax in full:

dx
Cfl—tl = a2 (t) + arpz2(1),
% = 2171 (t) + aggxg(t).

a) If e.g. a1o = 0, the first equation is reduced to

dx
d_tl = an1z1(t),

the solution of which is x1(t) = ¢j exp(ai1t). This solution is then inserted into the second
equation which then is solved by methods already mentioned in Calculus 1a, Functions in one
Variable. Analogously if ag; = 0.

b) If both a12 # 0 and as; # 0, we get from the first equation

agy dry a11022

1‘1(t),

ai12 dt ai2
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i.e. after a small rearrangement,

d?z dx
(7) ?21 — (a11 + a22)d_t1 + {a11a22 — a12a21}x1(t) =0,

which is a linear differential equation of second order and constant coefficients. This can
therefore be solved completely. The result is then put into (6), and one gets the corresponding
function xo(t).

Equation (7) is also written

d2x1 dxy
— - A—+ A =
) trace A det A xq (t) 0,

where trace A is called the trace of the matrix, i.e. the sum of the elements in the diagonal,

and where det A is the determinant. Incidentally this shows that the problems are best sorted
according to the trace of the matrix of the system.

4.8 Solution of an inhomogeneous linear system of differential equations
An inhomogeneous system of differential equations

(fl_)t( =Ax+u(t)

is solved by superposition, i.e. we first determine all solutions of the corresponding homogeneous
system, and then find a particular solution. Finally, all solutions of the homogeneous equation are
added to the particular solution.

Here I shall give two methods for determining the particular solution:

1) Systematic guessing. Examine the structure of the functions in u(¢) and make a guess of a solution.
Test your guess by insertion. This method is recommended, because the alternative method below
can produce some very complicated calculations. (Problems in elementary Calculus can always be
solved by a clever guessing).

2) The general solution formula
t
x(t) = plt)e + () [ B(r) Tu(r)dr,  telad,
to

This should be avoided as much as possible! If one nevertheless is forced to use it, I shall here ease
matters a little:

a) First calculate ®(¢)"tu(t) = v(¢).
b) Find the antiderivatives

/ n(t)dt and / vt dt

separately! (i.e. not in some form of a matrix).

¢) Insert finally into the solution formula.

The task will become big, but it should be possible to finish one’s calculations.
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5 The eigenvalue problem of differential equations

This chapter is an alternative exposition of the usual one seen in textbooks, based on my experience
that the students have difficulties in seeing why this complex of problem is of interest. One must
at least have the Fourier series at hand in order to profit from this fairly abstract set up, and this
assumption is not always followed in the textbooks. Let us begin by a review of the basis, already
given in Calculus 1a, Functions in one Variable.

5.1 Linear differential equations with constant coefficients

Let ag, a1,..., ap—1 be real constant. (The extension to complex constants should not make any
trouble). Let g(x) be a continuous function, defined in an interval I. We shall find the complete
solution in I of the following equation of order n:

dny dnfly dy
8) L(t):=—+a, 1——+ -+a — +aoy =q(x), zel.
( ) () dm” n 1d.Tn_1 1dx 0y q( )
We have in most cases either n = 1 or n = 2. In some courses in Mechanics one may see n = 4 as
well. For instance the differential equation of the bending of a column is given by

d? d*w d dw
— |\El— ) ——|N—)— =0.
dax? ( dx2> dx < dm) p(x) =0
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Assuming that E, I and N are all constants, this equation is reduced to

dtw N dPw  p(x)

O &t " ET @ T B
i.e. a special equation of the type (8).

A sound principle for linear differential equations like e.g. (8) is that a differential equation of order
n should be solved by n successive integrations, each giving a new arbitrary constant. We shall now
demonstrate that this is in fact true for (8).

The starting point is that the simplest possible differential equation

dy
10) =2 = I
(10) = =4q(@), zel

is solved by just an integration and the complete solution is
xT
(1) y=c¢ —l—/ g(t) dt, x €1, carbitrar constant.

Every exact solution formula will at some point go through the step from (10) to (11).
We shall demonstrate this by
dy
(12) Iy Y= q(x), x € I, a some complex constant.
x

Since we always have e =£ 0, we see that (12) is equivalent to

d —ax _ —ax @_ _ _—ax
(13) %(e y)=e {dx ay}—e q(x),

i.e. precisely a formula of the type (10). We therefore get by an integration that
x
ey =c+ / e "q(t) dt,
and we have derived the well-known formula, also presented in Calculus 1a, Functions in one Variable,
xr
(14) y = ce™ + eam/ e “q(t)dt, x €I, -carbitrary.

Remark 5.1 Recall that if a = o + i is complex then

e = exp((a +if)x) := e**{cos fx +isinfx}. O
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Theorem 5.1 Consider the linear equation of second order

d*y dy
(].5) @—l—al%—i—aoy:q(m), el
If Ry and Ry are the roots of the corresponding characteristic polynomial
R2 + alR + ap,

which is obtained from the differential equation by replacing j differentiations by R, and no differen-
tiation by the constant 1, then the complete solution of (15) is given by

T t x
(16) y = eRlz/ 6(32731)15 {/ efRzuq(u) du} dt+cleR1m +62€R11/ 6(R27R1)tdt,

where ¢1 and co are arbitrary constants.

Proof. Since the roots are R; and Rs, we have
R*+aiR+ap=(R—Ri)(R—Ry) = R* — (Ry + R2)R + Ry Ry,
hence

ap = —(Rl + RQ) og ap= RiR>.

If we put
dy
~Z — Ry,
i dx R
we get
dz d?y dy dy d?y dy
%fRQZ—@—ng—]ﬁ%%—fh}?zy—@‘Fala-ﬂloy—Q(iﬂ)-

Therefore, equation (15) is equivalent to the two equations of first order

_ dy _
%—RQZ—q(x) and . Ry = z(x).

According to (14) the first equation has the complete solution
x
2(z) = cpelt?” + eR”/ e 2t (t) dt.

By insertion into the second equation we again obtain an equation of the type (12), so by the trick in
(13) we get precisely (16). ¢

Remark 5.2 Notice that we do not make any particular assumptions on R, R, if only we mention
both of them. By this we mean that if Ry is a root of multiplicity 2, then we shall take R; twice.
Therefore, Ry and Ry are allowed to be equal or different, real or complex, and the succession of them
is also of no importance. This means that (16) is a general result.
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We can only see the difference when we compare the case of Ry # Ry with the case of Ry = Ra.
In the first case we shall always get a factor of the type e*!, a # 0, on every integral, while we for
Ry = Ry = R get the following;:

T t T
y = eR””/ {/ e_R“q(u)du}dt—&—cleRw—|—026Rw/ dt

x
= f / (z —t)e  Blg(t) dt + ¢1ef™ + éyz et

This shows that when we have a root of multiplicity 2, then we shall get a factor = [and (z — ¢)] in
the formule. O

The corresponding homogeneous equation

d2
d—;g+a1—y+aoy=

is solved by putting ¢(z) =0 in (15) and (16),
(17) y = c1ef1® 4 ¢y / erz=Rt gy

It is again seen that the solution of the inhomogeneous equation (15) is obtained by adding all solutions
(17) of the homogeneous equation to any particular solution, which is either found by guessing or is
calculated by the formula

x t
Yo = eR””/ e(f2—R1)t {/ e f2ug(u) du} dt.

This principle is typically used by the method of guessing, where one can save oneself of some very
long and tedious integrations.

5.2 Special case; the guessing method

For linear equations of second order with constant coefficients like in (15) it is always easy to find
the complete solution of the corresponding homogeneous equation, cf. (17) above. Then one can in
principle use the solution formula (16) to determine the complete solution. More general one may use
other solution formulae occurring in the traditional textbooks.

The disadvantage of these solution formulee is that one often is forced to go through some heavy
calculations of integrals, where even the pocket calculator or MAPLE do not like them. (It is therefore
recommended that one alternatively also try the guessing method for the determination of the solution
of homogeneous equation.

The idea is simple: If one e.g. by some humbug (one can also test the equation afterwards) has found
a solution of the inhomogeneous equation, then we get the complete solution by adding every solution
of the corresponding homogeneous equation.

The words “guessing method” sends actually a wrong signal to the reader. The method contains a lot
of systematism in spite of the name.

In lots of engineering applications (and to some extent also in mathematical applications) the inho-
mogeneous term ¢(x) in e.g. (15) is usually of one of the following types:
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1) a polynomial
Ex.: q(x) = 2%

2) an exponential function
Ex.: q(z) = e 7

3) a trigonometric function
Ex.: ¢(x) = sin3x;

4) a product of functions of the types above

Ex.: x sin 2x;
5) a sum of functions of the types above
Ex.: e™* 4 xe™".

Notice that by differentiation each of the classes above is either mapped into itself or into a simpler
class.

In the first step we split functions from class 5) into single functions each from one of the classes 1)-4),
and we solve each of the new equations separately. (For polynomials it is even possible directly to
proceed further).
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The main rule is: Always guess a solution of the same structure and test it by insertion into the
equation. (We here assume that the coefficients are constant).

1) If e.g. q(x) = 22, guess yo(x) = kow? + k1z + ko, where ko, k1, ko are determined by testing the
original equation. Since the degree of a polynomial is lowered by each differentiation, we can guess
the full polynomial of the same degree as ¢(z).

2) If e.g. g(x) = 6e~ ", guess yo(x) = k- e~ . The test in the equation will give us the explicit value
of k.

3) If e.g. q(x) = sin 3z, guess
yo(x) = k1 cos 3z + ko sin 3z,
and then kq, ko is determined by testing this solution. Note that one always guess the full trigono-
metric polynomial because e.g. T sin 3z = 3 cos 3x.

4) Ife.g. q(x) = 2%, guess yo(x) = (ka2®+k1z+ko)e %, just like in 1) and 2) above. The constants
are found by insertion into the differential equation-

5) Add all the solutions we have found already. Here we exploit that the differential equation is linear.

Exceptional case. If ¢(z) is a solution of the homogeneous equation (and of one of the types 1)—4)
above), then the method fails, because a guess of this type will always give 0.

The trick is here first to guess the structure as above and then add a factor x. If this guess also is
a solution of the homogeneous equation we add another factor x, etc.. Since the equation is of finite
order, we shall only modify in this way a finite number of times.

Example 5.1 Find the complete solution of

Py Py _dy
— —4—= —= — 2y = 2e" — 2.
dax3 dax? i dw YT *
The characteristic polynomial
R*—4R*+5R-2=(R*>-2R+1)(R-2)=(R—-1)*(R-2)

has the roots R; = Ry = 1 and R3 = 2.
the complete solution of the homogeneous equation is

c1€” + com e + c3e?”.
The right hand side ¢(x) = 2e® — 2z is of type 5), so we split into
a) q1(z) = =2z, and D) g2(x) = 2¢".

a) Since ¢1(z) = —2x is not a solution of the homogeneous equation we guess y1(z) = ax + b. By
insertion into the equation we get

>y d*n diyr

e f4ﬁ+5% — 2y = 5a — (2az +b) = —2ax + 5a — b.
This expression is equal to ¢;(x) = —22 when a =1 and b = 5, thus
yi(z) =z +5.
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b) Since g2(z) = 2¢e” is a solution of the homogeneous equation, we first guess cx e®. However, this

is also a solution of the homogeneous equation, so in our second guess we choose yz(x) = cz?e”.

It follows from

d
a(e) = 2%, W2 ofa 1 2w
& d?
L7 =@t Ar ke, T = ofa 4 6r - 6)e,

that we get by insertion

d3ys d?ys dys2
@2 4002, 502
da3 dx? + dx Y2

= ce” {(2® + 63+ 6) — 4(2” + 4z + 2) + 5(2* 4 22) — 22°} = —2ce”.

This expression is equal to go(z) = 2e® for ¢ = —1, thus ys(z) = —z2e”.
¢) We have now found a particular solution given by
yol) = 11(x) + ya(w) = = +5 — a2,
d) The complete solution is then
y=x+5— 22" + c1e” + cowe® + 3>, x €R,
where ¢; and c¢o and c3 are arbitrary constants. ¢
5.3 The initial value problem
Given the linear differential equation of order n
%—&—an_lfl;—;?{—l—---—kalj—z—&—aoy:q(aj), z el
Find the particular solution y = ¢(z), € I, which contains the line element (zo;yo,¥1,. -+, Yn—1)-

This means that we demand for x = z( that

dn—ly

W(Cﬁo) = Yn-1-

d
y(xo):yo, %(xo)zyla cees

dnfly

d
Since we specify vy, —y, S ITE N

to the initial “time” xy we call this problem an initial value

problem. Tt is solved by first finding the complete solution as described in the first two sections above.

dnfl

d—y, ey dT_'qi and insert x = zy. This gives us n linear equations in the n
x iy

unknown constants ¢, co, ..., ¢, from the complete solution. It can be proved that if the equation

has constant coefficients, then the solution is unique.

Then we calculate y(x),

The constants ¢, ¢, ..., ¢, are found by methods from Linear Algebra.

Therefore, initial value problems will hardly give one difficulties.
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5.4 The boundary value problem

Contrary to the initial value problem it is much more difficult to understand the meaning by the
boundary value problem, and why it is so interesting. Fortunately, Krenk: Mechanics and Analysis
of Beams, Columns and Cables, p. 160 sqq., gives an (ideal) example of applications, which I shall
briefly sketch here.

Consider an ideal column exposed to a variable load P = —N > 0. The column is then compressed a
little, which usually is of no importance. For small loads P the column does not deviate much from
the vertical. However, for some critical load Ppg, called the Fuler load, the column loses its stability
and it will bend from the vertical.

The task is not to describe and solve the problem of determining the critical load Pg.

Assume that the column has the length ¢ and that its bending module ET is constant. If we put

P

18) A=k* = —

(15) =

where the load P is allowed to vary, the differential equation of the bending is in the normalized form
given by

4 2 4 2
(19)d—w+k2d—w—0 (evt.dw—l-/\dw:O)

dz? dz? dxt dax?
where

M(z)  d*w
20 1 = @

P
The reason why Vol in (18) is put equal to both A and k? is that one has different traditions in the
two disciplines. In mathematics one will here typically write A.

From a mathematical, though not an engineering point of view, it is “new” that one has given condi-
tions in both end points of the interval [0, ¢], namely

w(0) = w(t) =0 og M(0)= M) =0.

The model can now be formulated equivalently in the two “languages”:

Mechanics Mathematics

d*w Pw d*w d?w

4 k2 = — 4+ A—=0
(21) dzt + dz? 0, dxt + daz? ’

w(0) = w(f) =0, w(0) = w(f) =0,

M(0)=M(£) =0, w”(0) = w”(¢) = 0.

the task is to find the critical load Pg, i.e. in reality k% and A in (21), such that this equation has
non-trivial solutions.

In Mechanics these non-trivial solutions to (21) are called the buckling modes w, (x) with the corre-
sponding buckling loads P, = k2 EI.
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In Mathematics these non-trivial solutions of (21) are called the eigenfunctions w,(z) with the corre-
sponding eigenvalues \y,.

Since the conditions on the solutions are not specified in a single point as it is by the initial value
problem, but instead in the boundary points of the interval [0, ¢], we call this problem for a boundary
value problem.

Remark 5.3 (Important!) Apart from the fact that an initial value problem is specified in I point,
while a boundary value problem is specified in 2 points, there is also a fundamental difference in what
we want by the two problems:

1) Considering an initial value problem we want to specify an unique solution. Here x = ¢ is typically
the time, and y is the coordinate of some particle to time ¢. This coordinate ought to be unique
for a given line element, if the model should be useful.

2) Cousidering a boundary value problem we want on the contrary to find out when the solution is not
unique (“when something breaks down”), i.e. the opposite of the task in the initial value problem.
When this is the purpose, we also call the boundary value problem an eigenvalue problem. ¢
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It should be obvious that it is important for a civil engineer to be able to estimate the load where
some given structure breaks down. When the maximal load is known we know something about the
dimensioning of the structure. As shown above this problem can be formulated as a boundary value
problem, and this should be sufficient for considering such problems. There is, however, much more
in the eigenvalue problem than one would guess at this stage.

In more advanced problems, e.g. when the stiffness ET is not a constant, it is roughly speaking possible
to construct the solutions by means of the eigenfunctions of
d*w I d*w

ot T E@I@) a2

(22)

One determines (e.g. by means of computer programs like MAPLE, since the task is too big for the
old fashioned use of tables, and even advanced pocket calculators will meet their shortcomings here)
a sequence of eigenfunctions wy(x) = @, (x) with corresponding eigenvalues ji,. These can be used
to describe the full technical model.

Here we need a small comment. It can be proved that the eigenfunctions uniquely determine a so-
called weight function k(x), such that the eigenfunctions {p, (z) | n € N} become orthonormal with
respect to the “strange” inner product,

1 for n=m,

14
@) (1.0) = [ @) Kaddn,  Gonind={ § a0

Usually k(x) contains an ugly constant, which one chooses to omit. The price is that {¢,(x) | n € N}
then only become orthogonal; apart from this the calculations become easier to perform.

We have actually already seen all this before, namely by the expansion of a function in a sinus series
over [0,¢], in which case k(z) = 1. The expansion of a function after {¢, () | n € N} by the inner
product (23) can therefore be regarded as a theory of generalized Fourier series. Many linear models
can in fact with advantage alternatively be described by its system of corresponding eigenfunctions,
even in the case of differential equations with variable coefficients.

One has known this theory during the last century, but so far only the constant case (where we get the
Fourier series) can be calculated explicitly. First by the appearance of programs like Mathematica and
MAPLE it has become possible to calculate also more general cases. This means that these computer
programs have opened up for a lot of new possibilities of applications.

Since these notes are only meant for elementary Calculus the student will at this stage for the time
being never meet eigenvalue problems where the eigenfunctions can only be determined by programs
like MAPLE.
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The formal definition of a linear boundary value problem is:

Definition 5.1 Boundary value problem. Given a linear differential equation of order n,
dny dn—ly dy
A — W#——&—al%Jraoy:q(z), IE[G,I)]CR

Find a solution y = ¢(x), © € [a,b], which satisfies the m linear boundary conditions

r110(a) + 1@ (@) + 1 10(B) o+ 12" (b) = s,

rm,l@(a‘) +--+ Tm,n(p(n_l)(a) + Tm,n+1 +--+ Tm.,Qn@(n_l) (b) = Sm-

Remark 5.4 This of course a formal and complicated definition, which should be reformulated as
soon as possible to matrices, if we shall keep our general view. Unfortunately one is then easily
diverted from the real purpose of the problem, namely the applications in the engineering disciplines.

O

Remark 5.5 In the practical applications we have m = n. the most commonly met applications are
given for m = n = 2. This is the reason why one can find a lot of literature of this case, where the
boundary value problem has been reduced to

d? d
d—;g—&—ald—z—l—aoy:q(x), x € [a,bl,

(24) ?”1,1Y(a) + 7”1,2?/(&) + 7“1,3y(b) + 7“1,4?//(5) = 51,

ro1y(a) + a2y’ (a) + r23y(b) + ro.ay’ (b) = so.

Even in this reduced case there will usually only be two of the 7; ;s in each row of the boundary
conditions which are # 0.

It has been noticed that concerning beams it is more natural to consider m = n = 4, cf. Krenk. There
is no need explicitly to write down the general equations in this case. They are of course analogous
to (24). ¢

Remark 5.6 If we put
rio=ri3=r1a=0 and 791 =ro3=1r24=0
and 71 =1 and ro0 =1 in (24), we get
d?y

d
@—i—al%—i—aoy:q(aﬁ), x € [a,b],

y(a) =51 og ¥y'(a)= s,

which from a formal point of view is also an initial value problem. This is quite confusing! Formally
the definition is OK; but in practice one should always demand that both boundary points a and b
should enter the boundary conditions at least once, when we consider boundary value problem.

Remark 5.7 By practical applications we are not at all interested in boundary value problems; rather
in the closely connected eigenvalue problems. For that reason we continue with the eigenvalue problems
in the next section without giving further examples of the boundary value problem. ¢
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5.5 The eigenvalue problem

The most common form of the eigenvalue problem is derived from the boundary value problem.

Definition 5.2 Eigenvalue problem I. Consider the following boundary value problem in [a, b],

d™y A"y dy dPy a1ty
ay e Jd &9 bl A N AT —
{dx”+an 1d:v"*1+ +a1dx+a0y i dml’+ P 1cl:cP—1+ +hoy 0

with m linear homogeneous boundary conditions, i.e.
riay(a) +- -+ Fay®) +---=0  fori=1,...,m.
Find the values of the parameter A, for which this problem has non-trivial solutions
ya(x).
The given solutions \ are called eigenvalues with the corresponding eigenfunctions y(z).
Remark 5.8 The differences from the general boundary value problem are
1) We put g(z) =0 and sy =s9 =--- =8, = 0.

2) Tt is the parameter X\, which first is the unknown. In the solution we get additional the cor-
responding eigenfunctions uy(x) # 0, which often in the applications can be given a physical
interpretation.

3) The eigenspace {cux(x) | ¢ € R} is usually of dimension 1 with a conveniently chosen eigenfunction
ux(z) as its basis vector. One is often careless about this and write instead that wy(z) is the
eigenfunction, where we tacitly mean that ¢ - uy(z) for ¢ # 0 is also a eigenfunction.

Occasionally we can have eigenspaces of a higher dimension. I have in another application seen
eigenspaces of dimension 2, i.e. all eigenfunctions belonging to some eigenvalue \ are of the form

crur 2 () + coug A (), ci1,c2 €R,

where uj »(z) and ug x(z) are linear independent. Such eigenspaces are difficult to handle, so they
are also avoided in the elementary courses. One cannot exclude eigenspaces of dimension > 3, but
I have never seen any in the applications. ¢

Remark 5.9 The formulation of the eigenvalue problem I assumes that the interval [a,b] is fixed.
This definition is too narrow, and it is in fact easy to find an eigenvalue problem, which is not of this
type, e.g. when the interval [0, A] depends on the eigenvalue . 1 call such problems rather vaguely
eigenvalue problems of type II. They are difficult to define mathematically though they intuitively are
obvious eigenvalue problems if we stick to that the task is to determine the values of the parameter \,
for which the boundary value problem has non-trivial solutions.

5.6 Examples

In this section we go through some examples of eigenvalue problems, mainly based on examples from
textbooks. The general procedure is

1) First determine the complete solution of the differential equation, typically based on the first
sections of this chapter, as well as more advanced theorems, when the coefficients are variable.
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2) Insert the boundary conditions and reduce.

3) Determine the values of the parameter A, for which at least one of the arbitrary constants in the
complete solution can be chosen freely. Then these A are the eigenvalues.

4) Insert the eigenvalues A from above in order to identify the eigenfunctions.

Example 5.2 (The original eigenvalue problem). Consider the eigenvalue problem

d2
YY i Ny=0, xel0,4,

y(0) =0 og y(£) =0.
For every fixed A this is a boundary value problem of order n = 2 and with m = 2 boundary conditions.

Notice that one often in textbooks writes y(0) = y(¢) = 0 for short. Thus we have latently two
boundary conditions, namely y(0) = 0 and y(¢) = 0. We shall here avoid the short version because
one may lose some information by using it.

Diversity creating knowledge

Business School
HANDELSH®)SKOLEN

Download free books at BookBooN.com

101


http://bookboon.com/count/pdf/346369/101

Calculus 4b The eigenvalue problem og differential equations

1) First find the complete solution of the differential equation

&y

dm2+)\y:0, xz € 10,4,

without the boundary conditions.

the equation has constant coefficients. We therefore set up the characteristic equation
R4+ X=0, ie. R? = -\
Then we get the usual mess of (here) three different cases:

a) If A < 0, then we can write A\ = —k? for some k > 0. The characteristic equation R? = —\ =
+k? has the two real roots +k, so the complete solution is

y = é1eM* + e, €1, C2 € R arbitrary.
Since

ek = cosh(kz) + sinh(kz) og e ¥ = cosh(kz) — sinh(kz),
the complete solution is more conveniently written in the form

y = ¢y cosh(kx) + ¢o sinh(kz), c1, co arbitrary.

Be aware of this trick, which always should be applied when one of the boundary points is 0.
Notice also the analogy with the trigonometric case below.

b) If A = 0, then the characteristic equation R? = 0 has the root R = 0 of multiplicity 2. The
complete solution is

Yy =1+ cax, c1, co arbitrary.

c) If A > 0, we write A = k? for some k > 0. The characteristic equation R?> = —\ = —k? has the
two complex conjugated roots +i k. Thus the complete solution is

y = ¢y cos(kx) + cosin(kx), c1, co arbitrary.

Notice the similarity between the structure in ¢) and in a). In the former case we use trigonometric
functions while in the latter case the hyperbolic functions. Notice also that b) (the “parabolic
case”) always is messy.

We have now found the complete solution in all three cases. We now proceed to the next step.

2) We shall use the boundary conditions y(0) = 0 and y(¢) = 0 on every of the three cases of the
complete solutions.

a) When \ = —k? < 0, we have the complete solution
(26) y(x) = ¢q cosh(kx) + co sinh(kx).
By insertion of x = 0 we get

y(0)=c1-14+c2-0=c; =0.
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Hereby (26) is reduced to the possibility
y(x) = cg sinh(kz).

Here we put z = ¢ and we get

(27) y(¢) = cosinh(kl) = 0.

Since sinh(k¢) > 0, we must have c; = 0. Therefore the only solution is obtained for ¢; = 0
and ¢o = 0, i.e. according to (26),

y(x) =0, when A\ = —k? < 0.

Since we only get the zero solution, we conclude that no A < 0 is an eigenvalue.

b) When A = 0 we get the complete solution
y(x) =1 + com.
By putting x = 0 we get

y(0)=c1+c2-0=c; =0,
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3)

and the set of candidates is reduced to
y(x) = com.
Inserting x = ¢ we get
y(l) =co- £ =0, i.e. co =0, because £ > 0.

Since both ¢; = 0 and ¢ = 0, we only obtain the zero solution, proving that A = 0 is not an
etgenvalue.

c) When A = k? > 0 the complete solution is

y(x) = ¢1 coskx + co sinka.

Inserting £ = 0 we get
y(0)=c1+c2-0=¢c; =0.

The candidates are then reduced to

(28) y(x) = cosin(kx).

Inserting x = ¢ we get

(29) y(£) = cosin(kl) = 0.

We have only reached the present step in case ¢) above. We want non-trivial solutions of the type
(28), i.e. we want that ¢y # 0. This can according to (29) only be achieved when

sin(k¢) = 0, ie. when kpl =nm >0, nelN
This gives us the possibilities:
n €N,
and it is seen that each of these in fact produces a solution.

The eigenvalues are then

Anzkiz(%)z, neN.

According to (28) [with ¢ = 1] an eigenfunction y,(x) corresponding to the eigenvalue A, =
nm

2
(7) ,n €N, is given by

Yn(2) = sin(k,x) = sin (?) , n € N.

nm 2
The complete set of eigenfunctions corresponding to A, = (7) , n € N, is given by

c-sin (?) , x €[0,¢], c arbitrary.

nwe
Note that all the eigenfunctions {sin (7) ‘ n e N} form a basis for a sinus expansion of a

function over [0, /]. ¢
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Example 1.5 is the model of all eigenvalue problems. For that reason it has been described fairly
thoroughly.

Example 5.3 Consider the eigenvalue problem (21), which was used here as a motivation, se also
Krenk, p. 160 sqq.. In the mathematical formulation we have according to (21) the eigenvalue problem

d*w dPw

w"‘ @zo, r € [0,4],

i.e. the order is n = 4 and we have m = 4 boundary conditions.
1) Since the equation has constant coefficients, we consider the characteristic polynomial
R*+ AR?* = R*(R* + \).
Formally we again must consider three cases:
a) When \ = —k? < 0, the complete solution is
y(x) = ¢1 + cax + c3 cosh(kx) + ¢4 sinh(kz).
b) When A = 0, we see that R = 0 is a root of multiplicity 4, hence the complete solution is
y(x) = 1 + cow + 322 + cax>.
c) When \ = k? > 0, the complete solution is
y(x) = ¢1 + cax + cz cos(kx) + cysin(kx).
Here we can reuse a lot from the previous example.

2) By a long and tedious analysis it is shown like in the example above that no A < 0 can ever be an
eigenvalue of the problem. The proof is left to the reader.

We are again left with c), i.e. A = k2 > 0, and the candidates of the eigenfunctions are
(30) y(x) = c1 + cox + c3 cos(kx) + ¢4 sin(kx)
with
(31) 3" (x) = —k*{cz cos(kx) + cqsin(kz)}.
By insertion of = 0 into (30) we get from the boundary condition that
y(0) =c¢1 + ¢35 =0.
By insertion of x = 0 in (31) we get from the boundary condition
y"(0) = —k%c3 = 0.

Since k > 0, the last equation gives c3 = 0, which put into the first one immediately gives ¢; = 0.
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We have hereby narrowed the set of candidates to

(32) y(x) = cox + ¢y sin(kx)

with

(33) 3" () = —k*cysin(kx).

When we put = £ in (32), it follows from the boundary condition that

(34) y(£) = col + cqsin(kl) = 0.

When we put 2 = £ in (33), it follows from the boundary condition that
y'(0) = —k*cysin(kl) = 0,

ie.

(35) cysin(kl) = 0.

Finally, when (35) is inserted into (34), we get cof = 0, from which ¢ = 0.

We have now reduced the set of candidates to

(36) y(x) = cysin(kx).

Since we want non-trivial solutions, we must have ¢4 # 0. According to (35) this gives us the
condition

sin(k¢) = 0, ie. kpl =nm >0, néeN,

from which k,, = %, n € N (the same as in the modelling example).

3) The eigenvalues are

/\n:ki:<%)2, neN.

4) The corresponding eigenfunctions are according to (36)

n € N.

m;x) ’

¢ Yn(x) :c~sin<
The physical interpretation of the eigenvalues is that
2
P, = MEI = K2EI = n? (Z) EI, neN,
are the critical loads or (buckling loads). The smallest of these
N 2
P, = Py — (7) EI, n=1,

14

is called the Euler load, for which the ideal column breaks down. ¢
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That the eigenvalue problem in practice far from always gives “nice” high school solutions is seen in
the following example.

Example 5.4 Cf. Krenk, Example 3.3. Consider an ideal column with fixed and simply supported
end points. We shall find the Euler load. Let P be the variable load. We derive by the usual reductions
(cf. Krenk, p. 160, p. 164 and p. 165) that the problem can be described by the following eigenvalue
problem

d*w d*w P
EU S0 0 where k2 = —
a7y | det T A2 T T

w(0) =0, w’(0) =0, w(f) =0, w’(£) =0,
i.e. of order n = 4 and with m = 4 boundary conditions.

We are considering a problem of compression, so we can for physical reasons immediately exclude
A < 0 and only consider the case A = k2 > 0.

1) The equation is the same as before, so we reuse the complete solution of the differential equation
from (37),

(38) w(x) = c¢1 + cox + 3 coskx + cq sin k.
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2) By the insertion into the boundary conditions we shall also need
(39) w'(z) = cg — kegsinkx + key cos kx
and
(40) w”(x) = —k*{c3 cos kx + ¢4 sin kx}.
Putting = 0 in (38) we get by the boundary condition
w(0) =c1 +c3 =0, ie. 3= —cy.
Putting z = 0 in (39)we get by the boundary condition

w'(0) = ¢z + key = 0, dvs. co = —key.

These conditions narrow the set of candidates to

(41) w(z) = c1(1 — coskx) + ca(—kx + sinkx)

with [cf. (40)]

(42) w"(z) = —k*{—c1 coskx + ¢4 sinkz}.

Putting z = ¢ in (41) we get by the boundary condition

(43) w(l) = c1(1 — coskl) + c4(—kl + sin kl) = 0.

Putting = £ in (42) we get by the boundary condition
w’ (0) = —k*{—cy cos kl + cysinkl} = 0,

i.e. since k? # 0,

(44) —cq coskl + ey sinkl = 0.

And then another small trick: When we subtract (44) from (43) we get the simpler equation

(45) ¢1 — eqkl =0, dvs. ¢1 = c4kl,

and the set of candidates has now been restricted to

(46) w(x) = cg{kl(1 — coskx) + (—kx + sinkx)}.

We only get non-trivial solutions by choosing ¢4 # 0 in (46), and it is actually possible by using this
information to fiddle with the solutions by repeating the investigation of (46), when e.g. ¢4 = 1.
We shall not, however, do this here, but instead use the standard procedure.

The problem has now been reduced to finding solutions (c1,c2) # (0,0) to (44) and (45). Let us
set up in the usual manner of Linear Algebra where ¢1 and c4 are the unknowns:

—cos(kl) - v + sin(kl)-cs = 0,

1'(21 — k€~C4 0.
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This system does only have solutions # (0,0) when the corresponding determinant is 0, i.e.dvs.

—cos(kl) sin(k?)

0= 1 ke

= k(- cos(kl) — sin(kf).

If cos(k¢) = 0, then sin(k¢) = £1, and the equation is not fulfilled. Therefore, any solution must
satisfy the transcendent equation

(47) tan(kl) = k.

x

Figure 1: Graphical solution of the equation tan(k(¢) = k¢.

By considering the graph we see that this equation has infinitely many positive solutions

1
knfe}nw,(n—i—i)w{, n €N,

1
and that they tend to <n + 2) 7 from below when n — oo, i.e.

1
0<<n+§)ﬂknéﬂo for n — oo.

The values shall be found by iteration, cf. e.g. Krenk, p. 166, or try yourself to set up a Newton-
Raphson procedure for the problem.

The eigenfunctions become very complicated, cf. (46). O

We have now shown the most important modelling examples of eigenvalue problems. Whenever one
comes across another eigenvalue problem, these should be the first ones to copy. For completeness we
shall here continue with a couple of more advanced eigenvalue problems.
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Example 5.5 Considering eigenvalue problems of type II one can also allow the eigenvalue to enter
the boundary conditions, like in e.g.

d2
d—;gﬂyzo, zel0,1],

where f(\) is a given function in the eigenvalue A. Since the purpose here is only to show the principles,
we shall restrain ourselves to the determination of the positive eigenvalues A > 0.

1) Since A > 0, the complete solution is
y(x) = ¢1 cos(VAz) + cosin(VAx)
where
y'(z) = —c;VAsin(VAz) 4+ ca VA cos(VA z).
2) Putting = 0 we get from the boundary condition that
y(0) =c1 =0,
thus the candidates can only be of the form
y(z) = cysin(VAx).

Since we are going for non-trivial solutions, we must have ¢ # 0. Due to the linearity it is sufficient
(for co = 1) to consider

(48) y(z) = sin(VAx) where /() = VA - cos(VAz)

and find the A, for which (48) is a solution.

When we put x = 1 we get from the latter boundary condition that
y(1) = FY(1) = sin(vA) — F)VA cos(v/A) = 0.

Since cos(v/\) = 0 implies that sin(v/A) # 0, we must have cos(v/A) # 0 for any solution of this
equation. Hence we get the equivalent transcendental equation

(49) f(\) = %7 A >0, [possibly VA f(\) = tan(v/\)]

3) In order to solve (49) we first draw the graphs of the two functions v Af()\) and tan(v/A) to see
where we can expect the eigenvalues. Once we know approximately where the eigenvalues are
situated we proceed with iteration in order to improve the approximate values. First try Newton-
Raphson iteration, and if it fails, apply the fiz point theorem.

From an application point of view the example is somewhat laboured, so there is absolutely no reason
to insert specific functions f(z). The method has already been demonstrated in Krenk, Example 3.3.

O
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Example 5.6 A more difficult example is concerned with the modelling of the bending of a vertical
one-sided constrained thin column of the length A under the impact of its own weight. This is actually
an old and misunderstood problem from an examination which never should have been given at this
stage. The problem is relevant, but it is far too difficult. The corresponding eigenvalue problem is of
type 11,

d'y d’y dy _

y(0) =0, ' (0)=0, ¥"(A)=0, y"(A)=0,

because the eigenvalue A also enters the definition of the interval. Hence, the problem is of the same
structure as an eigenvalue problem, and yet it is not of the type, which is described by the usual
definition.

The poor students did not have the right mathematical tools for solving this problem, so they could
only — even with a lot of help — get the estimate

A~ V2 =1,25992
of the first (and critical) eigenvalue. I have later calculated this value and found
A~ 1,98635,

which is far from the first estimate stated at the examination. ¢

Example 5.7 The third example is also from textbook which retrieved this example from a scientific
paper. This is actually an example of “Murphy’s Law: What can go wrong, must go very wrong!” First
the textbook does not quote the equation correctly. Then the physical dimensions of the equations
do not fit at all. And finally, the problem was not solved. (It was not either in the paper.) Such an
example should never be included in a textbook of elementary Calculus.

In order to help possible readers of the textbook mentioned above I shall here briefly add the following:
The correct eigenvalue problem is (after some normalization such that all the physical dimensions
disappear)

dy 1 9 dy
@-&-)\ Ha(l—x)—§(1—x )}w—(a—x)%—y =0
with the boundary conditions
y(0)=0, ' (0)=0, y"(0)=0, y"(0)=0
R
and o = 7 where R is the radius of the circle and ¢ is the length of the rod.

For an unspecified o one can only set up an iteration process, which converges all right, though is not
the easiest one to perform, not even for a specified «. I used 14 pages in my draft for the iteration!
The conclusion was that the iteration cannot be performed, unless « is given as a fixed number, i.e.
we cannot derive a general result, but we have to start from the very beginning for each new value of
a! Such an example cannot be used as a motivation in an elementary textbook. It will only confuse
the students. ¢
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Formulze

A  Formulae

Some of the following formule can be assumed to be known from high school. Others are introduced
in Calculus la. It is highly recommended that one learns most of these formule in this appendiz by

heart.

A.1 Squares etc.

The following simple formulae occurs very frequently in the most different situations.

a? + b + 2ab =

2 =a? 4+ b2 + 2ab, (
a? +b% —2ab = (
)

(a+0)

(a—b)? =a® +b* — 2ab,
( Y(a—b) = a® —b?,
(a+0b)

A.2 Powers etc.

Logarithm:
lzyl = Inlzl+Ifyl, @,y £0,

= 1H‘I|—1D‘y|, x,y;é(),

Injz"| = rln |z|, x # 0.
Power function, fixed exponent:

(xy)" =a"-y",x,y >0 (extensions for some r),

z\"  a"
(_> =—,z,y>0 (extensions for some r).
Y Y

Exponential, fixed base:

a®-a¥ =a*"¥, a>0 (extensions for some z, y),
(a®)! =a™,a >0 (extensions for some z, y),

1

a™t=—,a>0, (extensions for some ),
a

a=a'’" a>0, n € N.
Square root:

Va? = |z, x eR.

a+b
a—b

a?—b* = (a+0b)(a—0),
= (a —b)? + 4ab, (a —b)? = (a+ b)? — 4ab.

Remark A.1 It happens quite frequently that students make errors when they try to apply these
rules. They must be mastered! In particular, as one of my friends once put it: “If you can master the
square root, you can master everything in mathematics!” Notice that this innocent looking square
root is one of the most difficult operations in Calculus. Do not forget the absolute value! &
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A.3 Differentiation

Here are given the well-known rules of differentiation together with some rearrangements which some-
times may be easier to use:

{f(2) £ g(2)} = ['(2) £ 4'(2),

{f(@)g(x)} = f'(x)g(x) + f(x)g'(x) = f(x)g(x) {J;‘/((;f)) * ggl((j)) }’

where the latter rearrangement presupposes that f(z) # 0 and g(x) # 0.
If g(z) # 0, we get the usual formula known from high school

{f(x) }/ _ ['@)g(z) — f(x)g'(x)
g() g(x)?

It is often more convenient to compute this expression in the following way:
J@l _d fo v 1 _f@) [y [ @) g
Ve R A e B el o i g

where the former expression often is much easier to use in practice than the usual formula from high
school, and where the latter expression again presupposes that f(x) # 0 and g(x) # 0. Under these
assumptions we see that the formulee above can be written

{f(2)g(x)} _ f'(x)  d'(x)

Since
d f'(x)
d—1n|f( )| o)’ f(z) #0,

we also name these the logarithmic derivatives.
Finally, we mention the rule of differentiation of a composite function
{f(e(@)} = f'(e(2)) - ¢'(z).

We first differentiate the function itself; then the insides. This rule is a 1-dimensional version of the
so-called Chain rule.

A.4 Special derivatives.

Power like:

e (%) = - 271, for x > 0, (extensions for some «).
d 1
%ln|x|:5, for = # 0.
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Exponential like:

— expxT = expur,

d 1
% Arcoth z = 1_—1;2,

Remark A.2 The derivative of the trigonometric and the hyperbolic functions are to some extent
exponential like. The derivatives of the inverse trigonometric and inverse hyperbolic functions are

dz

d
o ) —= 1 .q¥
. (a®)=Ina-a”,

Trigonometric:

d .

— sinx = cosx,
dz

d .

—cosx = —sinx

dx ’

d 1
—tanz =1 +tan’z = ,
dx cos? x
d 1
—cotz = —(1+cot?z) = — ,
dx ( ) sin?

Hyperbolic:
— sinhz = cosh z,
dx
— coshz = sinh z,
dx

d 1
— tanhz = 1 — tanh?z = =
dx cosh” z
d 1
— cothz = 1 — coth?z = -
dx sinh® z

Inverse trigonometric:
Arcsi L
— Arcsin v = ——
dx V1= a2’
A 1
— Arccos © = ———
dx V1—a?

d 1
% Arctan x = 1—|——,1,‘2’

d 1
% Arccot z = m,

Inverse hyperbolic:

d 1
— Arsinh z = ——,

dx Va?+1
d 1

— Arcosh z = ,
dx 2 —1
d 1

e Artanh © = por

for z € R,

for x € R og a > 0.

for x € R,
for x € R,

T
forx#§+p7r,p€Z,

for z # pm,p € Z.

for z € R,

for z € R,
for z € R,

for = # 0.

forze]—1,1],
forze]—1,1],
for z € R,

for x € R.

for z € R,
for z €] 1,400,
for |z| < 1,

for |x| > 1.

power like, because we include the logarithm in this class. ¢
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A.5 Integration

The most obvious rules are about linearity

/{f(x) + Ag(z)} dx = /f(x) dx + /\/g(x) dz, where \ € R is a constant,

and about that differentiation and integration are “inverses to each other” i.e. modulo some arbitrary
constant ¢ € R, which often tacitly is missing,

[ F@ s = fa).

If we in the latter formula replace f(z) by the product f(x)g(x), we get by reading from the right to
the left and then differentiating the product,

f(@)g(z) = / {f(@)g(@)) do = / f()g() de + / f(2)g/(z) d.

Hence, by a rearrangement
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The rule of partial integration:

/ f(@)g(@) de = fx)g() - / f(@)g () de.

The differentiation is moved from one factor of the integrand to the other one by changing the sign
and adding the term f(z)g(z).

Remark A.3 This technique was earlier used a lot, but is almost forgotten these days. It must
be revived, because MAPLE and pocket calculators apparently do not know it. It is possible to
construct examples where these devices cannot give the exact solution, unless you first perform a
partial integration yourself. ¢

Remark A.4 This method can also be used when we estimate integrals which cannot be directly
calculated, because the antiderivative is not contained in e.g. the catalogue of MAPLE. The idea is
by a succession of partial integrations to make the new integrand smaller. See also Chapter 4.

Integration by substitution:

If the integrand has the special structure f(p(z))-¢’(z), then one can change the variable to y = p(x):

[1e@) - d@de == [ sendew = [ fw)an

y=¢p(x)
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Integration by a monotonous substitution:

If p(y) is a monotonous function, which maps the y-interval one-to-one onto the z-interval, then

Jr@a= [ sewm

Remark A.5 This rule is usually used when we have some “ugly” term in the integrand f(x). The
idea is to put this ugly term equal to y = ¢ ~!(z). When e.g. z occurs in f(z) in the form /z, we put
y =@ () = V&, hence x = ¢(y) = y* og ¢'(y) = 2y. O

A.6 Special antiderivatives

Power like:

1
/—dx=1n|x|,
x

/x”‘ dr = —1 2oL
a—+1

1
/ 1522 dxr = Arctan z,

1 1 1+
dr = =1
/1—332 v 2n‘1:17

1
/ —— dx = Artanh =z,

b

1— 22

1
/ ———dx = Arcoth z,

1— 22

1
————dxr = Arcsinz
/\/1—902 ’
1
—————dx = — Arccos x
/\/lfx2 ’
1
—————dxr = Arsinh =
/\/x2+1 ’

1
/\/ﬁdx:hl(er $2+1),

T
———dx = V22 -1,
/\/:EZ—l
1
————dx = Arcosh z,
/\/1‘2—1

1 —
/ﬁdxlnx+ 1’2*1|,

for  #£ 0. (Do not forget the numerical value!)

for a # —1,
for x € R,
for © # +1,
for |x| < 1,
for |z| > 1,
for |x| < 1,
for |x| < 1,
for x € R,
for z € R,
for z € R,
for x > 1,

for x > 1 eller z < —1.

There is an error in the programs of the pocket calculators TI-92 and TI-89. The numerical signs are
missing. It is obvious that Va2 — 1 < |z| so if © < —1, then = + V22 — 1 < 0. Since you cannot take
the logarithm of a negative number, these pocket calculators will give an error message.
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Exponential like:

/expxdxzexpx, for z € R,
xr 1 x
a®dr = — - a”, forz € R, oga>0,a# 1
Ina
Trigonometric:
/sinxdx:fcos:c, for z € R,
/cosxdfc =sinx, for z € R,
/tanxda::—ln|cosx|, forx;ég+p7r, peEZ,
/cotxdx:1n|sinx|, for x # prw, pé€EZ,
1 1 1+ si
/ dr=-1In w , forx;:éz+p7r, pEZ,
cosx 2 1 —sinx 2
1 1 1 —cosz
dr=-In| —— fi Z
/sinx T3 n(1+cosz>’ orz#pm peL
1 s
5— dr =tanuz, for x # — +pr, p€EZ,
COs~ T 2
1
—— dx = —cot z, for x # pmw, p€Z.
sin” x
Hyperbolic:
/sinha:dx:coshm, for z € R,
/cosha:d:v = sinh z, for z € R,
/tanhacdx:lncoshx, for z € R,
/Cothxdx:1n|sinh:c\, for x # 0,
1 .
dx = Arctan(sinh ), for x € R,
coshz
1 .
/ dx = 2 Arctan(e”), for z € R,
coshz
1 1 coshx — 1
dr==In| —— f 0
/sinh:z: T3 n(cosha:+1)7 orz #0,
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1 e’ —1
de=In|—— f 0
/Sinhx S e or z 70,
1
/72dx:tanhx, for z € R,
cosh” z
1
/7da;:—cothm, for x # 0.
sinh” x

A.7 Trigonometric formulae

The trigonometric formulae are closely connected with circular movements. Thus (coswu,sinu) are
the coordinates of a piont P on the unit circle corresponding to the angle u, cf. figure A.1. This
geometrical interpretation is used from time to time.

(cosu,sinu)

Figure 2: The unit circle and the trigonometric functions.
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The fundamental trigonometric relation:
cos?u +sinu = 1, for u € R.

Using the previous geometric interpretation this means according to Pythagoras’s theorem, that the
point P with the coordinates (cosu,sinu) always has distance 1 from the origo (0,0), i.e. it is lying
on the boundary of the circle of centre (0,0) and radius v/1 = 1.

Connection to the complex exponential function:
The complex exponential is for imaginary arguments defined by
exp(iu) :=cosu+1 sinwu.

It can be checked that the usual functional equation for exp is still valid for complex arguments. In
other word: The definition above is extremely conveniently chosen.

By using the definition for exp(iu) and exp(—iw) it is easily seen that

1
cosu = Q(exp(i u) + exp(—iw)),

1
sinu = i(exp(iu) —exp(—1iu)),
i
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Moivre’s formula: By expressing exp(inu) in two different ways we get:
exp(inu) = cosnu + i sinnu = (cosu + 1 sinu)”.
Example A.1 If we e.g. put n = 3 into Moivre’s formula, we obtain the following typical appliction,

cos(3u) + i sin(3u) = (cosu + i sinu)?

2 3

= cos® u + 3i cos? u - sinu + 3i% cosu - sin® u + i sin® u
= {cos® u — 3cosu -sinu} + i{3cos® u - sinu — sin® u}
= {4cos®u — 3cosu} + i{3sinu — 4sin’u}

When this is split into the real- and imaginary parts we obtain

cos3u = 4cos® u — 3cosu, sin3u = 3sinu — 4sinu. ¢
Addition formulae:

sin(u + v) = sinw cosv + cosu sin v,

sin(u — v) = sinw cosv — cosu sin v,

cos(u 4+ v) = cosu cosv — sinu sin v,

cos(u — v) = cosu cosv + sinu sinv.

Products of trigonometric functions to a sum:

. 1. 1.
sinu cosv = 5 sin(u + v) + = sin(u — v),

2
cosu sinv = 5 sin(u + v) — = sin(u — v),
. . 1 1
sinu sinv = 5 cos(u —v) — 5 cos(u + v),

1 1
cOsU COSV = 5 cos(u —v) + 5 cos(u + v).

Sums of trigonometric functions to a product:

. . . u—+v U—v
sinu + sinv = 2sin (| —— | cos ,
(5)=(3")
. . u-+vy\ . U —v
sinu —sinv = 2cos | —— | sin ,
()= (")
CoS U + cosv = 2 cos utv cos u—v ,
2 2
. u—+v . u—v
cosu—cosv:—2sm(T)s1n< 5 )

Formulz of halving and doubling the angle:

sin 2u = 2sinu cosu,

cos2u = cos®u —sinu =2 cos’u — 1 =1—2sin?u,
U 1 —cosu
sin 5= + — followed by a discussion of the sign,

/1
cos % == $ followed by a discussion of the sign,
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A.8 Hyperbolic formulse

These are very much like the trigonometric formulse, and if one knows a little of Complex Function
Theory it is realized that they are actually identical. The structure of this section is therefore the same
as for the trigonometric formulee. The reader should compare the two sections concerning similarities
and differences.

The fundamental relation:

cosh? z — sinh?® z = 1.
Definitions:

cosha = % (exp(x) + exp(—z)), sinhz = % (exp(z) — exp(—x)) .
“Moivre’s formula”:

exp(z) = coshx + sinh .

This is trivial and only rarely used. It has been included to show the analogy.
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Addition formulse:

sinh(z + y) = sinh(z) cosh(y) + cosh(z) sinh(y),
) ( (

sinh(z — y) = sinh(x) cosh(y) — cosh(z) sinh(y),

cosh(z + y) = cosh(z) cosh(y) + sinh(z) sinh(y),
)

cosh(z — y) = cosh(z) cosh(y) — sinh(x) sinh(y).

Formula of halving and doubling the argument:

sinh(2z) = 2sinh(z) cosh(z),

cosh(2z) = cosh?(z) + sinh?(z) = 2 cosh?(z) — 1 = 2sinh®(z) + 1,

2

h(z) —1
sinh (g) =+ M followed by a discussion of the sign,

cosh (g) =

cosh(z) +1
—

Inverse hyperbolic functions:

Arsinh(z) =1n (m + Va2 + 1) , z eR,
Arcosh(z) =In (m + m> , x>1,
Artanh(z) = %ln <1ti> , lz] <1,
Arcoth(x) = %ln (i i_ 1) , |z > 1.

A.9 Complex transformation formulae

cos(iz) = cosh(z),

sin(iz) = i sinh(z),

cosh(iz) = cos(z),

sinh(iz) = isinz.

A.10 Taylor expansions

The generalized

binomial coefficients are defined by

n

<a> al@—1) - (a—n+1)

1-2---mn ’

with n factors in the numerator and the denominator, supplied with

(5)

The Taylor expansions for standard functions are divided into power like (the radius of convergency
is finite, i.e. = 1 for the standard series) andezponential like (the radius of convergency is infinite).
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Power like:

In(l1+z) = Z(—l) - l7

n=1

oo -
x2n+1

Arctan(z) = Z (="

o 1
o 2n+1

x| <1,

2 <1,

neNxeR,

a € R\ N, |z <1,

2| <1,

|z] < 1.

Today’s job market values ambitious, innovative, perceptive team players. Swedish
universities foster these qualities through a forward-thinking culture where you’re
close to the latest ideas and global trends.
Whatever your career goals may be, studying in Sweden will give you valuable
Swedish Institute ~~ skills and a competitive advantage for your future. www.studyinsweden.se

124

Download free books at BookBooN.com


http://bookboon.com/count/pdf/346369/124

Calculus 4b

Formulze

Exponential like:

1
exp(z) = Z Ew”, xeR
n=0
S n 1 n
exp(—x) = Z(—l) A relR
n=0 :
(o)
2n+1 R
sin(x nz_% 2n T 1) , T € R,
2n+1
sinh(x Z Gn 1! , z e R,
n—O
= n 1 2n
cos(z) = Z(fl) <2n)'x , r € R,
n=0 ’

cosh(z) = reR.

A.11 Magnitudes of functions

We often have to compare functions for x — 0+, or for z — co. The simplest type of functions are

therefore arranged in an hierarchy:
1) logarithms,

2) power functions,

3) exponential functions,

4) faculty functions.

When z — oo, a function from a higher class will always dominate a function form a lower class.

precisely:
A) A power function dominates a logarithm for x — oc:

(Inxz)?

— =0 forx — o0, «a, 3 >0.
x

B) An ezponential dominates a power function for x — oo:

(03

x
— —0 forx — o0, a,a>1.
a

C) The faculty function dominates an exponential for n — oo:

— =0, n—oo, neN, a>0.

D) When 2 — 04 we also have that a power function dominates the logarithm:

2%Inz — 0—, for x — 0+, «a>0.
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